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Abstract—We develop a framework for extracting a concise representation of the shape information available from diffuse shading in a

small image patch. This produces a mid-level scene descriptor, comprised of local shape distributions that are inferred separately at

every image patch across multiple scales. The framework is based on a quadratic representation of local shape that, in the absence of

noise, has guarantees on recovering accurate local shape and lighting. And when noise is present, the inferred local shape distributions

provide useful shape information without over-committing to any particular image explanation. These local shape distributions naturally

encode the fact that some smooth diffuse regions are more informative than others, and they enable efficient and robust reconstruction

of object-scale shape. Experimental results show that this approach to surface reconstruction compares well against the state-of-art on

both synthetic images and captured photographs.

Index Terms—Shape from shading, local shape descriptors, statistical models, 3D reconstruction

Ç

1 INTRODUCTION

RECOVERING shape from diffuse shading is point-wise
ambiguous because each surface normal can lie any-

where on a cone of directions. Surface normals are
uniquely determined only where they align with the light
direction which, at best, occurs at only a handful of singu-
lar points. A common strategy for reducing the ambiguity
is to pursue global reconstructions of large, pre-segmented
regions, with the hope that many point-wise ambiguities
will collaboratively resolve, or that shape information will
successfully propagate from identifiable singular points
and occluding contours.

Global strategies are difficult to apply in natural scenes
because diffuse shading is typically intermixed with other
phenomena such as texture, gloss, shadows, translucency,
and mesostructure. Occluding contours and singular points
are hard to detect in these scenes; and shading-based shape
propagation breaks down unless occlusions, gloss, texture,
etc. are somehow analyzed and removed by additional
visual reasoning. Moreover, most global strategies do not
provide spatial uncertainty information to accompany their
output reconstructions, and this limits their use in provid-
ing feedback to improve top-down scene analysis, or in co-
computing with other necessary bottom-up processes that
perform complimentary analysis of other phenomena.

As illustrated in Fig. 1, this paper develops a framework
for leveraging diffuse shading more broadly and robustly
by developing a richer description of what it says locally
about shape. We show that point-wise ambiguity can be

systematically reduced by jointly analyzing intensities in
small image patches, and that some of these patches are
inherently more informative than others. Accordingly, we
develop an algorithm that produces for any image patch a
concise distribution of surface patches that are likely to
have created it. We propose these dense, local shape distri-
butions as a new mid-level scene representation that pro-
vides useful local shape information without over-
committing to any particular image explanation. Finally, we
show how these local shape distributions can be combined
to recover global object-scale shape.

Our framework is developed in three parts:

1) Local uniqueness. We provide uniqueness results for
jointly recovering shape and lighting from a small
image patch. By considering a world in which the
shape of each small surface patch is exactly the
graph of a quadratic function, we prove two generic
facts: i) when the light direction is known, quadratic
shape is uniquely determined; and ii) when the light
is unknown, it is determined up to a four-way
choice. We also catalog the degenerate cases, which
correspond to special shapes, or conspiracies
between the light and shape. These results are of
direct interest to those studying the mathematics of
shape from shading.

2) Local shape distributions. We introduce a computa-
tional process that takes an image patch at any
scale and produces a compact distribution of qua-
dratic shapes that are likely to have produced it.
At the core of this process is our observation that
all likely shapes corresponding to a (noisy) image
patch lie close to a one-dimensional manifold
embedded in the five-dimensional space of qua-
dratic shapes. This part of the paper is of broad
interest because these local, multi-scale shape dis-
tributions may be useful as intermediate scene
descriptors for various visual tasks.

3) Reconstruction. We present a simple and effective
bottom-up reconstruction system for inferring
object-scale shape from a single image of a
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predominantly textureless and diffusely-shaded
surface. This reconstruction system uses as input
our local shape distributions inferred from dense,
overlapping patches at multiple scales. It is concep-
tually simple, computationally parallelizable, and
robust to non-idealities like shadows, texture, high-
lights, etc., with reconstruction accuracy that com-
pares well to the state of the art. This system is of
direct interest to those studying algorithms for tra-
ditional shape from shading, and it is structured in
a modular way that provides a step toward co-com-
putation with other reconstructive processes that
also analyze other phenomena.

These three parts are tightly bound together. The unique-
ness results in Section 3 show that the quadratic model is a
particularly convenient representation for small surface
patches. In the absence of noise, both shape and lighting are
locally revealed, and local shape is generally unique when
lighting is known. Building on this, Section 4 examines how
uniqueness breaks down in the presence of noise. While
very different quadratic shapes can produce equally-likely
local intensity patterns, we find that all highly-likely shapes
lie close to a one-dimensional sub-manifold. Then, Section 5
shows how to infer a dense set of sample shapes along this
sub-manifold, thereby taking an image patch and producing
a one-dimensional shape distribution. Finally, Section 6
shows how these multi-scale local distributions can enable
robust global reconstruction of shape, by naturally encoding
the fact that some smooth diffuse regions are more informa-
tive than others.

The project page associated with this paper [1] provides
separate implementations of our algorithms for inferring
local distributions (Section 5) and global shape (Section 6).
These are highly parallelized and can be executed on a sin-
gle machine, a local cluster of machines, or a cluster from a
standard utility computing service.

2 RELATED WORK

Background on shape inference from diffuse shading can be
found in several reviews and surveys [2], [3], [4]. An impor-
tant question is whether shape is uniquely determined by a
noiseless image, which has been addressed by a variety of
PDE-based formulations. For example, Oliensis considered

C2 surfaces and showed that shape can be uniquely deter-
mined for the entire image by singular points and occluding
boundaries together [5], and in many parts of the image by

singular points alone [6]. For the more general class of C1

surfaces, Prados and Faugeras [7] employed a smoothness
constraint to prove uniqueness properties in a more general
perspective setup [8], [9] given appropriate boundary con-
ditions. In this paper, we use a more restrictive local surface
model but prove local uniqueness without any boundary
conditions or knowledge of singular points. This generalizes
previous studies of local uniqueness, which have consid-
ered locally-spherical [10] and fronto-parallel [11] surfaces.

Global uniqueness analyses have inspired global propa-
gation and energy-based methods for global shape inference
(e.g. [2], [12], [13]), some of which rely on identifying
occluding boundaries and/or singular points. While most
methods do not typically provide any measurement of
uncertainty in their output, progress toward representing
shape ambiguity was made by Ecker and Jepson [14], who
use a polynomial formulation of global shape from shading
to numerically generate distinct global surfaces that are
equally close to an input image. In this paper, we study
uniqueness and uncertainty at the local level, and infer dis-
tributions over candidate local shapes.

Our work is related to patch-based approaches that
use synthetically-generated reference databases. The idea
there is to reconstruct depth (or other scene properties
[15]) by synthesizing a database of aligned image and
depth-map pairs, and then finding and stitching together
depth patches from this database to match the input
image and be spatially consistent. Hassner and Basri [16]
obtain plausible results this way when the input image
and the database are of similar object categories, and
Huang et al. [17] pursue a similar goal for textureless
objects using a database of rendered Lambertian spheres.
Cole et al. [18] focus on patches located at detected key-
points near an object’s occlusion boundaries, combining
shading and contour cues. We also describe global shape
as a mosaic of per-patch depth primitives, but instead of
relying on primitives from a pre-chosen set of 3D mod-
els, we consider a continuous five-parameter family of
depth primitives corresponding to graphs of quadratic
functions at multiple scales.

One of the our main motivations is the long-term goal of
enabling better co-computation with other bottom-up and
top-down visual processes, and by providing useful local
shape information without choosing any single image inter-
pretation, our distributions are consistent with Marr’s prin-
ciple of least commitment [19]. We focus on diffuse shading
on textureless surfaces, leaving for future work the task of
merging with bottom-up processes for other cues like
occluding contours (e.g., [18], [20]), texture, gloss, and so
on. Our belief that this will be useful is bolstered by promis-
ing results achieved by recent global approaches to such
combined reasoning [21].

In independent work, Kunsberg and Zucker [22] have
recently derived local uniqueness results that are related to,
and consistent with, our results in Section 3. Their elegant
analysis, which uses differential geometry and applies to
continuous images, is complimentary to the discrete and

Fig. 1. We infer from a Lambertian image patch a concise representation
for the distribution of quadratic surfaces that are likely to have produced
it. These distributions naturally encode different amounts of shape infor-
mation based on what is locally available in the patch, and can be unimo-
dal (row 2 & 4), multi-modal (row 3), or near-uniform (row 1). This
inference is done across multiple scales.
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algebraic approach employed in this paper. Kunsberg and
Zucker also observe that the analysis of shading in patches
instead of at isolated points is consistent with early process-
ing in the visual cortex, and they discuss the possibility of
local shading distributions being computed there. Indeed,
the notion of such distributions is compatible with evidence
that humans perceive shape in some diffuse regions more
accurately than others [11].

3 QUADRATIC-PATCH SHAPE FROM SHADING

We begin by analyzing the ability to uniquely determine the
shape and lighting of a local patch from a Lambertian shad-
ing image in the absence of noise. The key assumption in
our analysis is that depth of the patch can be exactly
expressed as the graph of a quadratic function. While subse-
quent sections consider deviations from this idealized set-
ting, the following analysis characterizes the inherent
ambiguity under a local quadratic patch model.

We model the depth zðx; yÞ of a local surface patch as a

quadratic function defined by coefficient vector a 2 Re5 up
to a constant offset:1

zðx; y; aÞ ¼ a1x
2 þ a2y

2 þ a3xyþ a4xþ a5y: (1)

In matrix form, this is z ¼ ½x; y�H½x; y�T þ J ½x; y�T with

H ¼ a1 a3=2
a3=2 a2

� �
(2)

the Hessian matrix and J ¼ ½a4; a5� the Jacobian of the depth
function. The un-normalized surface normal to this patch at
each location ðx; yÞ is then given by

nðx; y; aÞ ¼ ½nxðx; y; aÞ; nyðx; y; aÞ; 1�T ; (3)

where

nxðx; y; aÞ , � @z

@x
¼ �2a1x� a3y� a4; (4)

nyðx; y; aÞ , � @z

@y
¼ �2a2y� a3x� a5: (5)

In matrix form, this is nðx; y; aÞ ¼ A½x; y; 1�T with

A ,
�2a1 �a3 �a4
�a3 �2a2 �a5
0 0 1

24 35 (6)

the shape matrix corresponding to quadratic shape a.
The intensity Iðx; y; aÞ of this patch, observed from view-

ing direction v ¼ ½0; 0; 1�T under a directional light source

l ¼ ½lx; ly; lz�T , is

Iðx; y; aÞ ¼ lT nðx; y; aÞ
knðx; y; aÞk ; (7)

assuming spatially-uniform Lambertian reflectance and that
no part of the patch is in shadow, i.e., lTnðx; yÞ > 0; 8ðx; yÞ.

Here, the magnitude jjljj of the light vector represents the
product of the surface albedo and the light strength, and it
is not assumed to be equal to one. Re-arranging, the inten-
sity I at each point ðx; yÞ induces a quadratic constraint on
its surface normal [14]:

I2nTn ¼ nT llTn ) nT ðllT � I2I3�3Þn ¼ 0; (8)

where I3�3 is the identity matrix. This further induces a
related constraint on shape parameters a:

½aT 1�ðDT ðllT � I2I3�3ÞDÞ
� a
1

� ¼ 0; (9)

where we use the matrix D 2 R3�6 to re-write the relation-

ship between n and a in (3)-(5) as n ¼ D½aT1�T .
Every pixel ðx; yÞ in an image patch gives one such con-

straint on shape parameters a, and shape from shading for
quadratic patches rests on solving this system of polynomial
equations. Our immediate goal is to determine whether the
shape a and lighting l can be uniquely determined from
these local constraints.

3.1 Uniqueness of Simultaneous Shape and Light

We assume that the local patch is sufficiently large to con-
tain a minimum number of non-degenerate pixel locations,
where the condition for non-degeneracy is defined as
follows:

Definition 1. For a patch V ¼ ðxi; yiÞf gNi¼1, we define the matrix

VV 2 RN�15 such that each row vi of VV consists of all fourth-
order and lower terms of xi and yi:

vi ¼
�
x4i ; x

3
i yi; . . . xp

i y
q
i

p;q�0;pþq�4
. . . ; xi; yi; 1

�
: (10)

A patch V is considered non-degenerate if the matrix VV has
rank 15.
Note that rectangular grids of pixels that are 5� 5 or

larger will be non-degenerate under the above definition.

Theorem 1. Given intensities Iðx; yÞ in an image patch V col-
lected at a set of non-degenerate locations not in shadow, if
any quadratic-patch/lighting pair ða; lÞ that satisfies the set
of polynomial equations (9) has a surface Hessian with
eigenvalues that are not equal in magnitude, then there are
no more than four distinct surfaces that can create the same
image. Each of these surfaces is associated with a unique
lighting when the Hessian of any solution is non-singular,
and a one-dimensional family of lighting vectors otherwise.

This theorem states that given measurements of intensity
from a quadratic surface patch, there generically exists four
physical explanations, each comprised of a shape a, a light
direction l=klk, and a scalar klk encoding the product of
albedo and light strength.

Before proceeding to the proof, we introduce a lemma
that relates to equations with ratios of quadratic terms. We
define x , ½x y 1�T , so that the normals are given by
nðx; y; aÞ ¼ Ax, and the intensity constraint (9) becomes

I2x ¼
lTn

knk
� �2

¼ xTAT llTAx

xTATAx
: (11)1. Local shading for the special case a4 ¼ a5 ¼ 0 is described in [11],

and a more restrictive, locally-spherical model zðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2 � y2

p
is analyzed in [10].
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Using this notation, we can state the following lemma,
which is proven in the supplementary material:

Lemma 1. Let A and eA correspond to two matrices of the form in

(6), and l and el to two lighting vectors. If
xTAT llTAx

xTATAx
¼ xT eATelel T eAx

xT eAT eAx
; 8x 2 V; (12)

and if RankðVVÞ ¼ 15, RankðAÞ � 2, and lTAx > 0; 8x 2 V
(i.e., no point is in shadow), then

AT llTA ¼ eAT elel T eA;ATA ¼ eAT eA: (13)

Moreover, if RankðAÞ ¼ 2, then Rankð eAÞ ¼ 2 and both A andeA share a common null space.

Proof of Theorem 1. Suppose there exists a solution ða; lÞ
that produces the observed set of intensities in the patch
V, and the Hessian matrix of surface a has eigenvalues of
un-equal magnitude. We will prove that if there exists

another solution ðea;elÞ, such that

xTAT llTAx

xTATAx
¼ I2x ¼

xT eATel el T eAx
xT eAT eAx ; 8x 2 Vi; (14)

then ~amust be related to a in one of four specific ways.
Since a is not planar (otherwise the Hessian would

have both eigenvalues equal to zero), the correspond-
ing matrix A is at least rank 2, and we can apply
Lemma 1:

eATel el T eA ¼ AT llTA; eAT eA ¼ ATA: (15)

We define a new matrix B satisfying eA ¼ BA. Specifi-

cally, when A is full rank we set B ¼ eAA�1; and when

RankðAÞ ¼ 2, we set B ¼ ð eAþ vvT ÞðAþ vvT Þ�1 with v a

vector in the common null-space of A and eA, i.e.,

Av ¼ eAv ¼ 0. We will show that there are only four pos-
sibilities for the matrix B.

Note that A and eA are affine matrices (last rows are
both ½0; 0; 1�). Moreover, in the rank 2 case, the last entry

of v will be 0 and Aþ vvT will also be an affine matrix.

Therefore, A�1 (if A is full rank) and ðAþ vvT Þ�1 (if A is
rank 2) are affine. Hence, B is also an affine matrix:

B ¼
b11 b12 b13
b21 b22 b23
0 0 1

24 35: (16)

From (15), we have BTB ¼ I3�3, i.e.,

b213 þ b223 þ 1 ¼ 1 ¼) b13 ¼ b23 ¼ 0: (17)

The orthogonality of B further restricts its top-left block
to be either a 2D rotation matrix

B ¼
cos ’ �sin’ 0
sin’ cos ’ 0
0 0 1

24 35; (18)

or an “anti-rotation” matrix

B ¼
cos ’ sin’ 0
sin’ � cos ’ 0
0 0 1

24 35; (19)

for ’ 2 ½�p;pÞ.
From eA ¼ BA and the fact that the ð1; 2Þ-entry and

ð2; 1Þ-entry of eA matrix should be the same (since
a12 ¼ a21 ¼ �a3, ea12 ¼ ea21 ¼ �ea3Þ, we have

2a1b21 þ a3b22 ¼ a3b11 þ 2a2b12: (20)

This implies that when B is of the form in (18)

ða1 þ a2Þsin’ ¼ 0; (21)

and when B is of the form in (19)

ða1 � a2Þsin’ ¼ a3 cos ’: (22)

Since the Hessian of a defined in (2) has eigenvalues of
un-equal magnitude, a1 þ a2 6¼ 0, and either a1 6¼ a2; or
a3 6¼ 0. This leaves only four possible solutions for B:

1 0 0

0 1 0

0 0 1

264
375; cos’0 sin’0 0

sin’0 � cos ’0 0

0 0 1

264
375;

�1 0 0

0 �1 0

0 0 1

264
375; � cos ’0 �sin’0 0

�sin’0 cos ’0 0

0 0 1

264
375;

(23)

where ’0 ¼ arctan a3
a1 � a2

. Thus eA ¼ BA can relate to A in
only four possible ways.

Next, we consider the lighting el associated with each

shape eA. Equation (15) implies eATel ¼ AT l or eATel ¼ �AT l
but the latter has shadows, so

AT l ¼ eATel ¼ ATBTel: (24)

When A is full rank, (24) implies a unique el given by

el ¼ ðBT Þ�1l ¼ Bl: (25)

If RankðAÞ ¼ 2, we define l? as the component of l in the

null space of AT . Then, from (24), we have

BTel ¼ lþ cl? ) el ¼ Bðlþ cl?Þ; (26)

where c is a scalar. In this case there is a 1D family of el for
each of the four shapes eA. tu
Fig. 2 provides an example of the four choices of shape/

light pairs in the generic, non-cylindrical case when both

Fig. 2. Four quadratic-patch/lighting configurations that produce the same
image (left is a ¼ ½1; 1=2; 0; 0; 0�; l ¼ ½2=3; 1=3; 2=3�). The lighting is shown
as blue arrows. The left pair and right pair are each convex-concave.
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eigenvalues of the surface Hessian are non-zero. Without
loss of generality, we consider a rotated co-ordinate system
where a3 ¼ 0, i.e., the x- and y-axes are aligned with the
eigenvectors of the surface Hessian. Then, the four solutions
from (23) are:

ð½a1; a2; 0; a4; a5�; ½lx; ly; lz�Þ; (27)

ð½�a1;�a2; 0;�a4;�a5�; ½�lx;�ly; lz�Þ; (28)

ð½a1;�a2; 0; a4;�a5�; ½lx;�ly; lz�Þ; (29)

ð½�a1; a2; 0;�a4; a5�; ½�lx; ly; lz�Þ: (30)

The first choice is the surface/lighting pair ða; lÞ that actu-
ally induced the image. The second corresponds to the well-
known convex-concave ambiguity [10], and is obtained by
reflecting both the light and the normals across the view
direction. The last two choices (29)-(30) correspond to per-
forming the reflection separately along each of the eigenvec-
tor directions of the Hessian matrix. These form a second
concave-convex pair.

When one of the Hessian eigenvalues is zero (say a2 ¼ 0
in our rotated co-ordinate system), the patch surface is a cyl-
inder and it is possible to construct a 1D family of lights for
each of the four surfaces:

el ¼ diagfsignðea1a1Þ; signðea5a5Þ; 1g ðlþ c � ½0; 1; a5�T Þ (31)

for any c 2 R such that no pixel is in shadow. Fig. 3 shows
an example of four cylindrical surfaces and associated fami-
lies of lights that can produce the same image.

Theorem 1 applies when the Hessian eigenvalues of any
solution shape are not equal in magnitude. What happens
when shape solutions have Hessian eigenvalues that are of
equal magnitude? There are two distinct cases. The first is
when the Hessian is zero and the true surface is planar. In

this case every surface normal in the patch is identical, and
the well-known point-wise cone ambiguity applies to the
patch as a whole: The observed image can be explained by a
one-parameter family of planar surfaces for every light l.

In the second case, the true surface is not planar but the
magnitudes of the two eigenvalues of the Hessian matrix
are equal. Unlike the planar ambiguity, there is not an infi-
nite number of surfaces that can combine with every light-
ing. But as depicted in Fig. 4, there is still an infinite number
of allowable patch/lighting pairs. We note that all quadratic
surfaces in this category can be expressed as either one of
two following forms:

a ¼ ½r cos u;�r cos u; 2rsin u;

p cos u � q sin u; p sin u þ q cos u�; (32)

a ¼ ½�r; �r; 0; �p;��q�; (33)

where u 2 ð�p;p�; � 2 f�1;þ1g; r 2 Rþ, and p; q 2 R. Given
fixed values of r; p and q, these surfaces generate identical
images when paired with lighting

l ¼ ½lx cos u � ly sin u; lx sin u þ ly cos u; lz�; (34)

for surfaces (32), or with

l ¼ ½�lx;��ly; lz�; (35)

for surfaces (33), with fixed values of lx; ly; lz.

3.2 Unique Shape when Light Is Known

Theorem 2. Given intensities Iðx; yÞ at a non-degenerate set of
locations V, a known light l, and a quadratic patch a that satis-
fies the set of equations in (9), if the planar component ½lx; ly� of
the light is non-zero (i.e., l is not equal to the viewing direc-
tion) and not an eigenvector of the Hessian of a, then the solu-
tion a is unique.

Proof of Theorem 2. Without loss of generality, we choose a
co-ordinate system where a3 ¼ 0. Note that for any such
choice lx and ly will both be non-zero, unless ½lx; ly� is
zero or an eigenvector of the surface Hessian, which is
ruled out by the statement of the theorem.

If the Hessian of a has eigenvalues with unequal mag-
nitudes, then it is easy to see that each of the four possi-
ble solutions from Theorem 1 has distinct light from (25)
and (26), and therefore for a fixed light, the shape is
unique. A Hessian with equal eigenvalues is ruled out
since then every light-direction would be an eigenvector.
When the eigenvalues have equal magnitudes but oppo-
site signs, a must be of the form in (32) with u ¼ 0 or p

Fig. 3. Lighting solutions in the cylinder case, when one of the eigenval-
ues of the surface Hessian is zero. There is a 1D family of lighting (any
lighting direction in the blue plane with appropriate strength) for each of
the four shapes that can produce the same image.

Fig. 4. When Hessian eigenvalues are equal in magnitude, there is a continuous family of patch/lighting pairs (given by (32) and (33)) that produce
the same image. Note that the first four pairs above are analogous to Fig. 2.
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(since a3 ¼ 0) and r ¼ ja1j ¼ ja2j. In this case too, we see
that each member of the continuous family ofsolutions—
with u 2 ð�p;p� for surface (32) and light (34), or
� 2 f�1;þ1g for surface (33) and light (35)—has a dis-
tinct light-direction. tu
When the conditions in Theorem 2 are not satisfied,

there are shape ambiguities as follows. First, planar patches
have Hessians with zero eigenvalues so that every l is an
eigenvector; this leads to an infinite set of planar shape
explanations for any given light. Second, when the light
and view directions are the same, there are generically four
shape solutions analogous to Fig. 2 or, in the case of equal
eigenvalue magnitudes, a continuous family of solutions
analogous to Fig. 4. Finally, when the true surface is not
planar but the azimuthal component of the light ½lx; ly� hap-
pens to be aligned with one of the Hessian eigenvectors, it
is possible to construct a second solution by performing a
reflection of the normals across that eigenvector direction.
Fig. 5 demonstrates this with photographs of two 3D-
printed surfaces that are distinct but related by a horizontal
reflection of their normals.

4 AMBIGUITY IN THE PRESENCE OF NOISE

The uniqueness results from the previous section suggest
that among the many possible models one could use for
local shapes—such as splines, linear subspaces, exemplar
dictionaries [17], or continuous functions with smoothness
constraints as in [21]—the quadratic function model may be
particularly useful. However, before we can use this model
for inference, we must understand the effects of deviations,
such as intensity noise and higher-order (non-quadratic)
components of local shape. To this end, we provide some
intuition about the types of quadratic shapes that almost sat-
isfy the polynomial system (9) and thus become likely
explanations in the presence of noise. These intuitions moti-
vate a statistical inference technique that will be introduced
in Section 5.

In the rest of this paper, we assume that the light direction
l=klk and the albedo/light-strength product klk are known.
Then, the polynomial system (9) relating the quadratic
parameters a to the observed intensities I can be understood
as combining two types of constraints on the patch normals
n ¼ ½nx; ny; 1�. First, each pixel’s normal is constrained by its
intensity to a light-centered circle of directions as per (7).
This is shown in the left of Fig. 6, where the circle of direc-
tions is parameterized by “azimuthal” angle

u ¼ arctan
nxly � nylx

l2x þ l2y � lzðnxlx þ nylyÞ

 !
: (36)

The second type of constraint comes from the quadratic
shape model, which induces a joint geometric constraint on
the set of surface normals that belong to the patch. This joint
constraint has an intuitive interpretation when we represent
the normals, light, and view as points on the plane defined
by nz ¼ 1 (the so-called projective plane [23]). This represen-
tation is constructed by radially-projecting the hemisphere
of directions onto the plane as shown in Fig. 6. The view is
the origin of the plane, the light projects to another planar
point ðlx; lyÞ=lz, and each pixel’s u-parameterized circle of
normal azimuthal directions projects to a conic section, still
parameterized by u. The set of normals that lie on different
conics but have the same azimuthal angle u form a ray (right
of Fig. 6), and an inversion in the sign of u corresponds to a
reflection of the surface normal across light point.

Using this representation, Fig. 7 visualizes the two types
of constraints (under a light with ly ¼ 0) for 25 normals at a
5� 5 grid of ðx; yÞ pixel locations. In addition to each pixel’s
normal being constrained to its conic, the set of normals is
collectively constrained, via (6), to be a symmetric affine
grid. Therefore, solving the polynomial system for qua-
dratic coefficients a amounts to finding a symmetric affine
grid that aligns properly with the per-pixel conics. Theo-
rem 2 tells us there is only one grid that aligns perfectly, but
as shown in the figure, there will be other grids that come
close. When there is noise, the shapes corresponding to all
of these grids become likely explanations, even though they
are physically quite different from one another. To avoid
over-committing, local inference systems must output dis-
tributions of shapes that encode this fact.

Then, a natural question is: do we need to search the
entire five-dimensional space of quadratic parameters a to

Fig. 5. Left: Two quadratic surfaces that produce the same image when
the light is aligned with one of their common Hessian eigenvectors. For
other view and light configurations (e.g., right) their images are distinct.

Fig. 6. The light-centered cone of possible surface normals at any image
point projects radially to a conic on the projective plane. We parameter-
ize these conics by the radial projection of spherical angle u.

Fig. 7. Exact and approximate solutions for quadratic shape. Each
color corresponds to a pixel in the patch (four are shown in the
plot), whose intensity defines a conic curve that the normal vector
should lie on. The normal vectors for a quadratic patch should form
an affine grid on the projective plane, and good-fit shapes have grids
that are well-aligned with the corresponding conics. The top left grid
corresponds to an exact fit.
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find all the likely approximate solutions? To answer this
question, we note that these approximate solutions are intu-
itively expected to arise from the degenerate cases detailed
in Theorem 2. For example, we find that these solutions
often occur in pairs corresponding to reflections across the
light direction (i.e., across the x-axis in Fig. 7), which would
correspond to a second exact solution if the light were a
eigenvector of the surface Hessian. Remember that the most
ambiguous degeneracy is the one induced by the true sur-
face being planar, when all the conics overlap and there is a
continuous set of solutions whose normals can be parame-
trized by a single angle u as per (36). Based on this intuition,
we define uðaÞ as the first-order orientation of the shape a to
be the angle of the center normal, and find empirically that
it is sufficient to search along only a one-dimensional mani-
fold parametrized by this angle.

In Fig. 7, this search can be understood as fixing the value
of uðaÞ, and warping an affine grid by optimizing the
parameters a1; a2; a3; a4; a5 to fit the conic intensity con-
straints. We see that this leaves very little play in the param-
eters, so the shapes a of possible solutions are highly
constrained once uðaÞ is fixed. This effect is further visual-
ized in Fig. 8, which shows contours of constant RMS inten-
sity difference—equally spaced in value on a logarithmic
scale—between the observed intensities and the Lambertian
renderings of best-fit shapes obtained by fixing uðaÞ and one
coefficient (say, a1) and then optimally fitting the others
(say, a2; a3; a4; a5). The four “close fits” appear as the four
modes in these plots, where the value of uðaÞ strongly con-
strains each coefficient of low-error shapes a.

5 LOCAL SHAPE DISTRIBUTIONS

Armed with intuition about the characteristics of approxi-
mate solutions for the quadratic-patch model, we now
develop a method for inferring shape distributions at any
local image patch of any size. The output for each image
patch is a set of quadratic shapes of the same size that cor-
respond to a discrete sampling along a u-parametrized
one-dimensional manifold, as well as a probability distri-
bution over this set of quadratic shapes. The previous sec-
tions have demonstrated that shading in some image
patches is inherently more informative than others. Our
goal is to create a compact description of this ambiguity in
each local region at multiple scales, thereby providing a

useful mid-level representation of “intrinsic” scene infor-
mation for vision.

5.1 Computing Quadratic Shape Proposals

Given the intensities Ioðx; yÞ at a patch ðx; yÞ 2 V, we first
generate a set of quadratic proposals for the shape of that
patch, and based on the intuition from the previous section,
we index these proposals angularly in reference to the light
l. Consider a discrete set of uniformly-spaced values

uj; j 2 f1; . . . Jg over ð�p;p�,2 and for each angle uj we find

the corresponding quadratic shape aj that best explains the
observed intensities Ioðx; yÞ in terms of minimum sum of
squared errors:

aj ¼ argmin
a:uðaÞ¼uj

X
ðx;yÞ2V

kIoðx; yÞ � Iðx; y; aÞk2; (37)

where Iðx; y; aÞ is defined as per (7).
Let ð0; 0Þ be the center of the patch. Then since uðaiÞ is

fixed, the quadratic coefficients a4 and a5 of aj only have
one degree of freedom, and can be re-parametrized in terms
of a single variable r 2 Rþ that indexes points along the con-
stant u ray on the projective plane:

a4 ¼ � lx
lz
� r � lx

lz
cos uj þ ly sin uj

� �
; (38)

a5 ¼ � ly
lz
� r � ly

lz
cos uj � lx sin uj

� �
: (39)

Therefore, the non-linear least-squares minimization in (37)
is over the four variables a1:3; r, and can be efficiently car-
ried out with Levenberg-Marquardt [24]. We found empiri-
cally that it is insensitive to initialization, and use ½0; 0; 0; r0�
in our experiments, where r0 is chosen such that the center
pixel lies on the corresponding conic.

This minimization occurs independently and in parallel
for every patch in an image, and it can therefore be parallel-
ized over an arbitrary number of CPU cores, on a single
machine or a cluster of machines, as required for increasing
image sizes. Our reference implementation considers
J ¼ 21 quantized angles for each patch, and takes one min-
ute on an eight-core machine for inference on all overlap-
ping 5� 5 patches in a 128� 128 image.

5.2 Computing Shape Likelihoods

Next, we define a probability distribution over these shape
proposals by computing the likelihoods for the observed
intensities being generated by each proposed shape aj. We
introduce a model for the deviation between observed
intensity Ioðx; yÞ and expected intensity Iðx; y; aÞ from a pro-
posal a at each location ðx; yÞ:

Ioðx; yÞ aj 	 N
	
Iðx; y; aÞ; s2

i þ s2
zðx; y; aÞ



: (40)

This is a Gaussian distribution conditioned on a, where the
variance at each pixel ðx; yÞ is a sum of two terms. The first is

Fig. 8. Iso-contours of RMS intensity error for renderings of best-fit
shape parameters ða1; a2; a3; a4; a5Þ when u is fixed. Close fits occur at
very different orientations (four modes here), but for any fixed orientation
u the remaining shape parameters are very constrained.

2. For some patches, we consider closer-spaced samples over a
shorter interval when values close to 
p do not correspond to physi-
cally feasible estimates for shape.
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additive i.i.d. intensity noise s2
i induced, for example, by sen-

sor noise. The second is a function of a and varies spatially
across the patch, capturing the fact that the veridical shape
may exhibit higher-order (non-quadratic) variations at this

patch’s scale. It is the expected variance in intensity s2
zðx; y; aÞ

induced by higher-order components of shape that exist on
top of the shape predicted by a at the current scale.

To compute s2
zðx; y; aÞ, we model the deviations of the

true normals ð~nx; ~nyÞ from those predicted by a as i.i.d.
Gaussian random variables:

~nxðx; yÞ 	 N ðnxðx; y; aÞ; s2
n0Þ; (41)

~nyðx; yÞ 	 N ðnyðx; y; aÞ; s2
n0Þ; (42)

where s2
n0 is the expected normal variance of these devia-

tions, which is set to 10�6 in our experiment. Then, we com-

pute s2
zðx; y; aÞ as the expected variance in intensity over the

distribution of ~nx; ~ny:

s2
zðx; y; aÞ ¼ E

~nx;~ny
Iðx; y; aÞ � lx ~nx þ ly ~ny þ lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n2
x þ ~n2

y þ 1
q

�������
�������
2

¼ E
~nx;~ny

lxnxðaÞ þ lynyðaÞ þ lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
xðaÞ þ n2

yðaÞ þ 1
q � lx ~nx þ ly~ny þ lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~n2
x þ ~n2

y þ 1
q

�������
�������
2

:

(43)

We find that for lights not aligned with the view, i.e.,
jlzj < 1, this expression can be reliably approximated as:

s2
zðx; y; aÞ �

	
l2x þ l2y



s2
n0

n2
xðx; y; aÞ þ n2

yðx; y; aÞ þ 1
: (44)

Intuitively, this says that the observed intensity is less sensi-
tive to perturbations in the normal ½nx; ny� when the surface
is tilted away from the viewing direction.

Putting everything together, we compute a cost Dj for

every proposal aj, defined as the negative log-likelihood of
all observed intensities under the above model:

Dj ¼ �log pðIo j ajÞ ¼
X
ðx;yÞ2V

1

2

�
log
	
s2
i þ s2

zðx; y; ajÞ



þ ðIoðx; yÞ � Iðx; y; ajÞÞ2
s2
i þ s2

zðx; y; ajÞ
�
:

(45)

5.3 Evaluation

We evaluate the accuracy of the proposed local shape distri-
butions using images of a set of six random surfaces
synthetically rendered (with the light at an elevation of
60 degree) , where each surface is created by generating a
5� 5 grid of random depth values, and then smoothly inter-
polating these to form a 128� 128 surface (see [1], and
Fig. 12 for an example).

Fig. 9 shows likelihood distributions and proposed
shapes for representative image patches from this syn-
thetic dataset. Empirically, we find that the distributions

Dj can have a single peak (left), be multi-modal (center),
or nearly uniform (right); re-enforcing our intuition that
shading in some image patches is more informative than

others. Note that given the correct value of uj (green dot
in the figure), the corresponding estimated shape pro-

posal aj yields an accurate reconstruction of the true
shape in all three cases shown.

We perform a quantitative evaluation of accuracy
using all overlapping patches from all six random surfa-
ces and for three different patch-sizes (roughly 80 k-90 k
patches in total for each size). We are interested in know-
ing: (i) how often the veridical shape is among the set of

shape proposals aj at a patch; and (ii) whether the cost

Dj is an informative metric for determining which pro-

posals aj are most accurate. To this end, for each image
patch in the evaluation set, we sort the proposed qua-

dratic shapes according to their likelihood costs Dj, com-
pute for each proposal the mean angular difference
between its surface normals the veridical ones, and
record for increasing values N ¼ f1; . . . J ¼ 21g the low-
est mean angular error among the N most-likely shape
proposals. Fig. 10 shows the statistics of these errors
across all test patches for increasing values of N .
Although the most-likely shape proposal (i.e. N ¼ 1) is
often reasonably close to true shape, the error quantiles
decrease significantly more as we consider larger sets of
likely proposals. This emphasizes the value of maintain-
ing full distributions of local shape as a mid-level scene
representation, as opposed to “over-committing” to only
one (often sub-optimal) shape proposal for each patch
through a process of hard local decision-making.

Fig. 10 also provides some insight about the effect of
patch-size, and it shows that patches at multiple scales tend
to be complimentary. Smaller patches are more likely to
have lower errors when considering the full set of proposals
(N ¼ J ¼ 21), since the veridical shape is much more likely
to be exactly quadratic at smaller scales. But, as evidenced

Fig. 9. Shape likelihood distributions inferred from image patches. Graphs show likelihood cost Dj over first-order orientation uj, each of which is
associated with a shape proposal aj.
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by the relatively smaller error quantiles for lower values of
N , larger patches tend to be more informative, with their

likelihoods Dj being better predictors of which of the pro-

posals aj is the true one.

6 SURFACE RECONSTRUCTION

To demonstrate the utility of our theory and local distribu-
tions for higher-level scene analysis, we consider the appli-
cation of reconstructing object-scale surface shape when the
light l is known. The local representations provide concise
summaries of the shape information available in each image
patch, and they do this without “over-committing” to any
one local explanation. This allows us to achieve reliable per-
formance with very a simple algorithm for global reasoning
that infers object-scale shape through simple iterations
between: 1) choosing one likely shape proposal for each
local patch; and 2) fitting a global smooth surface to the set
of chosen per-patch proposals.

Formally, our goal is to estimate the depth map Zðx; yÞ
froman observed intensity image Iðx; yÞ, with known lighting
l and under the assumption that the surface is predominantly
texture-less and diffuse, i.e., the shading equation (7) holds at
most pixels. We first compute local distributions as described

in the previous section, by dividing the surface into a mosaic
of overlapping patches of different sizes. We let p 2 f1; . . .Pg
index all patches (across different patch-sizes), withVp corre-

sponding to the pixel locations, and fajp;Dj
pgj denoting the

local shape proposals and distribution for each patch p.
In addition to the J proposals at each patch, we use an

approach similar to [18] and include a dummy proposal

faJþ1p ¼ f; DJþ1
p ¼ Dfg in the distribution for every patch.

This serves to make the surface reconstruction robust to out-
liers, such as when the local patch deviates significantly
from a quadratic approximation (e.g. sharp edges or depth
discontinuities), or when the observed intensities vary from
the diffuse model in (7), e.g. specularities, shadows, or
albedo variations due to texture.

We formulate the reconstruction problem as simulta-
neously finding a depth estimate Z and a labeling Lp 2
f1; . . . J þ 1g; 8p that minimize the cost function:

CðZ; fLpg; �Þ ¼
XP
p¼1

�DLp
p þ

X
ðx;yÞ2Vp

d
	
Z; aLp

p ; x; y

0@ 1A; (46)

where � is a scalar weight, and d measures the agreement

between the local shape proposal a
Lp
p and Z at ðx; yÞ:

Fig. 10. Local shape accuracy. We show quantiles (25 percent, median, 75 percent) of each patch’s mean normal angular error, for the best estimate
amongst theN most-likely shape proposals for each patch, for different values ofN and for different patch sizes. The quantiles forN ¼ 1 correspond
to making a hard decision at each patch, and errors forN ¼ 21 correspond to the best estimate amongst the full set of proposals.

Fig. 11. Surface reconstruction accuracy for different methods on synthetic images of random surfaces. Shown here are quantiles (25 percent,
median, 75 percent) of angular errors of individual normals across all surfaces for images rendered with different degrees of additive Gaussian noise,
and specular highlights.
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dðZ; a; x; yÞ ¼ rxZðx; yÞ � nxðx; y; aÞ
ryZðx; yÞ � nyðx; y; aÞ
���� ����2; (47)

if a 6¼ f, and 0 otherwise.
We use an iterative algorithm to minimize the cost C,

alternating updates to Z and fLpg based on the current esti-
mate of the other. Given the current estimate Z� of the depth
map at each iteration, we update the label Lp of every patch
independently (and in parallel):

Lp  argmin
L2f1;...Jþ1g

�DL
p þ

X
ðx;yÞ2Vp

dðZ�; aLp ; x; yÞ: (48)

Similarly, given a labeling fL�pg (with corresponding
shape proposals fa�pg), we compute the depth map Z that

minimizes the cost in (46) as:

Z  argmin
Z

X
p

X
ðx;yÞ2Vp

d
	
Z; a�p; x; y



¼ argmin

Z

X
x;y

w�ðx; yÞ rxZðx; yÞ � n�xðx; yÞ
ryZðx; yÞ � n�yðx; yÞ
���� ����2; (49)

where w�ðx; yÞ is the number patches that include ðx; yÞ and
have not been labeled as outliers, and n�xðx; yÞ; n�yðx; yÞ their
mean normal estimates:

V�1ðx; yÞ ¼ fp : ðx; yÞ 2 Vp; a
�
p 6¼ fg;

w�ðx; yÞ ¼ jV�1ðx; yÞj;
n�xðx; yÞ ¼

1

w�ðx; yÞ
X

p2V�1ðx;yÞ
nx

	
x; y; a�p



;

n�yðx; yÞ ¼
1

w�ðx; yÞ
X

p2V�1ðx;yÞ
ny

	
x; y; a�p



:

(50)

The computation in (49) could be carried out exactly and
efficiently using the Frankot-Chellappa algorithm [25] if all
w�ðx; yÞ were equal. But this is not the case since w�ðx; yÞ
will be lower near the boundary and in regions where
some patches have been detected as outliers. Nevertheless,
we find that [25] provides an acceptable approximation in
these cases. We use [25] throughout the alternating itera-
tions until Z and fLpg converge,3 and then we run a lim-
ited number of additional iterations using conjugate-
gradient to compute step (49) exactly.

To speed up convergence, we smooth the estimate of Z in
the first few iterations with a Gaussian filter with variance s

and set �0 ¼ s2�, starting from an initial value s0 that is
decreased by a constant factor sf till it reaches 1 (at which
point we stop smoothing). We also initially run the algo-
rithm over only the valid proposals at each patch till conver-
gence, and then introduce the dummy proposal f. We set
the parameters � and Df automatically based on the input
distributions—� is set to 1=4th the reciprocal of the mean of
the differences between the minimum and median likeli-
hood costs across all patches at the smallest scale, and Df is

set to 10��1. The reconstruction from local patch proposals

takes 40 seconds on average on an eight-core machine for
128� 128 images with local distributions at four scales (not
including the computation time for estimating local pro-
posals, which is reported in Section 5.1).

6.1 Evaluation

We first quantitatively evaluate the proposed reconstruction
algorithm, under known lighting, with the random surfaces
described in Section 5.3. We render images with different
amounts of additive white Gaussian noise, as well as with
specular highlights. For the latter, we use the Beckmann
and Spizzichino [26] model and consider different values of
“surface smoothness” to get images with increasing num-
bers of saturated pixels. We mask out pixels that are satu-
rated during estimation, but note that many nearby
unclipped pixels will also include a non-zero specular com-
ponent that violates the diffuse shading model.

Fig. 11 summarizes the performance—using local distri-
butions of 3� 3, 5� 5, 9� 9, and 17� 17 overlapping
patches—and compares it to two state-of-the-art methods.
The first is the iterative algorithm proposed by Ecker and
Jepson [14] (labeled “Polynomial SFS”). The second (labeled
“Cross-scale”) is the shape from shading component of the
SIRFS method [21], i.e., where we treat the light and shad-
ing-image as given, and do not use contour information (so
as to evaluate the shading cue in isolation). The cross-scale
method uses an over-complete, multi-scale representation
of the global depth map and minimizes the rendering error
along with the likelihood of the recovered shape under a
prior model. For both methods we use implementations
provided by their authors, and for the cross-scale method,
we use the author-provided prior parameters that were
trained on the MIT intrinsic image database [27].4

We see from Fig. 11 that while the polynomial SFS
method performs the best in the noiseless case, the pro-
posed algorithm is more robust to both Gaussian noise and
the structured artifacts from specular highlights. The cross-
scale method is also reasonably robust to these effects due
to its use of a shape prior, but in general has higher errors.
Fig. 12 provides example reconstructions for the proposed
method for one surface—the full set of reconstructions are
available at [1].

Next, we evaluate all algorithms using photographs of
seven relatively-diffuse objects, captured with a Canon EOS

Fig. 12. Reconstructions by the proposed method on different rendered
images of a synthetic surface.

3. We simply set n�xðx; yÞ ¼ n�yðx; yÞ ¼ 0when w�ðx; yÞ ¼ 0.
4. We also evaluated the cross-scale method with a prior trained on

the random surfaces, but this did not improve performance.
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40D camera under directional lighting, with two chrome
spheres in the scene to measure light direction. These photo-
graphs contain non-idealities such as mutual illumination,
self-shadowing, and slight texture. For each object under a

fixed viewpoint, we took twenty images with varying light
directions, with which we can recover the normal vectors as
well as depth map by photometric stereo to a high accuracy.
We use this recovered shape as ground truth for our

Fig. 13. Surface reconstruction on real captured data. We show two novel view points for each reconstruction, and the median angular error between
estimated surface normal vectors and ground truth surface normal vectors. A more interactive visualization is available at [1].
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evaluation. All the captured images, calibration informa-
tion, and recovered normal and depth maps are available
on our project page [1].

For each object, we choose a single image as input to
evaluate the performance of different SFS frameworks. The
99th percentile intensity value of the image is assumed to
correspond to the albedo times light intensity and used for
image normalization; and since these images are larger, we
use local distributions at two additional patch-scales:
33� 33 and 65� 65. The surfaces reconstructed using the
different methods and measured light direction are shown
in Fig. 13 along with median angular error values. We find
that in most cases, the proposed algorithm provides a better
reconstructions of object-scale shape than the baselines.

7 DISCUSSION

Our theoretical analysis shows that in an idealized quadratic
world, local shape can be recovered uniquely in almost
every local image patch, without the use of singular points,
occluding contours, or any other external shape information.
Beyond this idealized world, our evaluations on synthetic
and captured images suggest that one can infer, efficiently
and in parallel, concise multi-scale local shape distributions
that are accurate and useful for global reasoning.

There are many viable directions for interesting future
work. Foremost among these is the joint estimation of
shape, lighting, and albedo. The reconstruction algorithms
proposed in this paper are limited to the case when lighting
is known, but the uniqueness results in Section 3.1 suggest
that simultaneous reconstruction of shape and lighting may
also be possible. Theorem 1 tells us that, in an idealized
quadratic world, there are generically four lights l that can
explain each local patch, and that these quadruples of possi-
ble lights will vary from patch to patch according to the
directions of each patch’s Hessian eigenvectors. Intuitively,
one might infer the true light (along with its reflection
across the view, which is always equally-likely) as the one
that is common to all or most of the per-patch quadruples.5

Practically speaking, it is likely that for a reconstruction
algorithm to handle unknown lighting, it will need to
jointly reason about shape, lighting, and varying albedo, in
the same spirit as Barron and Malik [21]; and that such rea-
soning will benefit from an analysis of the joint ambiguities
that are induced by noise and non-quadratic shape, similar
to what was done for shape alone in Sections 4 and 5.

Also, while we provide a means to extract a single esti-
mate of the global surface from local shape distributions, one
could also imagine using reasoning about consistency and
outliers to allow the full distributions of neighboring patches
to collaboratively refine themselves. This could be useful, for
instance, when the object boundaries in a scene are not
known a-priori. These refined local distributions may then
be able to identify depth discontinuities in the scene, and
help segment out individual objects for shape recovery.

Finally, it will be interesting to pursue combining our
shading-based local distributions with complementary rea-
soning about contours, shading keypoints [28], texture,
gloss, shadows, and so on—treating these as additional cues
for shape, as well as to better identify outliers to our smooth
diffuse shading model. We also believe it is worth integrat-
ing these local shape distributions into processes for higher-
level vision tasks such as pose estimation, object recogni-
tion, and multi-view reconstruction, where one can imagine
additionally using top-down processing to aid local infer-
ence, for example by exploiting priors on local quadratic
shapes that are based on object identity or scene category.
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