
Problem Statement
In a multi-path MIMO 
system, given only the 
sensor measurements, 
how to jointly estimate 
the input signals and
the channel properties?
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Preliminaries

Observations: the multiple 
channels in the output are 
highly correlated.

Efficient Low-rate Sampling:
• Fully sampling in a small sub-
band of the output signals and 
use them to recover all the 
channel properties
• Only a sparse sensing on the 
rest of frequency band is 
necessary to fully recover the 
input signals.

Assumptions
Channels are sparse and have common 
support. This is a good approximation for 
most multi-path systems with limited 
bandwidth.

2. PRELIMINARIES

2.1. MIMO System Formulations

Consider a MIMO system with I sources x1, x2, . . . , xI and L sen-

sors y1, y2, . . . , yL. The signal measured at each sensor is the sum of

all source signals going through the corresponding channels, i.e.,

y�(t) =
I�

i=1

hi,�(t) ∗ xi(t), 1 ≤ � ≤ L, (2)

where {hi,�(t)} are the channel responses as defined in (1).

We suppose that all the signals are of finite-length and can thus

be extended to periodic signals, for some period T . By computing the

Fourier series on both sides of (2), we can write the frequency-domain

counterpart of (2) in a compact matrix-vector form

Y [m] = H[m]X[m], (3)

where X[m]
def
=

�
Xi[m]

�
I×1

,Y [m]
def
=

�
Y�[m]

�
L×1

and H[m]
def
=�

Hi,�[m]
�
L×I

1
denote the mth Fourier coefficients of the source sig-

nals, sensor measurements, and channel responses, respectively.

2.2. The SCS Model in the Fourier Domain

In the Fourier domain, the channel impulse responses of the SCS

model (1) can be written as

Hi,�[m] =
K�

k=1

c
(i,�)
k u

m
k , (4)

where uk
def
= e

−j2πtk/T . A fundamental property of these sum-of-

exponential signals is that they can be “annihilated” by a (K +1)-tap

filter, i.e., there exist a set of K+1 coefficients {ak}0≤k≤K such that

K�

k=0

akHi,�[m− k] = 0, for all m. (5)

Furthermore, the exponents {uk} are the roots of the polynomial

formed by the annihilating coefficients [8, 9], i.e.,

a0x
K + a1x

K−1 + . . .+ aK−1x+ aK = a0

K�

k=1

(x− uk). (6)

The above expression implies that the annihilating coefficients {ak}
are fully determined by the exponents {uk} and are independent of the

weights

�
c
(i,�)
k

�
in (4). In the SCS model, all the channel responses

have the same support, and therefore their Fourier transforms Hi,�[m]
share the same exponents {uk}. It follows that we can generalize the

classical annihilating filter in (5) to the following matrix form

K�

k=0

akH[m− k] = 0. (7)

This “matrix annihilation” formula captures all the SCS properties in

the MIMO system and will play an important role in the proposed

blind estimation algorithm described in Section 3.

2.3. Inherent Ambiguities

Given the sensor measurements Y [m] as defined in (3), our goal is

to simultaneously estimate the unknown source signals X[m] and the

unknown channels H[m], subject to the constraint that the channels

H[m] satisfy the SCS model as in (4).

To be clear, it is not possible to fully determine X[m] and H[m]
from the sensor measurements Y [m]. In fact, one can easily verify

1
Note that Hi,�[m] lies at the (�, i)-th position of matrix H[m].

the following from our mathematical formulation: If {X[m],H[m]}
is a solution to (3) with H[m] satisfying (4), then

{ξ−m
E

−1
X[m], ξmH[m]E} (8)

is also a valid solution, where E is an arbitrary non-singular constant

matrix and ξ
def
= e

j2πτ/T
for some τ ∈ R. In the time domain, the

phase term ξm in (8) points to an inherent ambiguity in time delay: We

can always set the sources and channels to {xi(t+ τ), hi,�(t− τ)}
for arbitrary τ without changing their convolution results. The ma-

trix E in (8) indicates that we can only reconstruct the coefficients of

{X[m],H[m]} up to the linear subspaces they expand.

Finally, we note that the above ambiguities become trivial for

single-input and multiple-output (SIMO) systems, as the matrix E de-

generates to a scalor. In this case, we aim to reconstruct the unknown

source and the channels up to a common time shift and a scalar multi-

plication.

3. THE PROPOSED BLIND ESTIMATION ALGORITHM

In this section, we present our blind estimation algorithm for sparse

MIMO systems with common support. For simplicity of exposition,

we first consider the SIMO case, which provides useful insight on

how to deal with the unknown multipath channels. We then discuss

the generalization to the MIMO case.

3.1. The SIMO Case

In a SIMO system, each output y�(t) is the result of a single source

signal x(t) going through the corresponding channel h�(t). It follows

that the Fourier domain system equation (3) can be simplified as

Yl[m] = H�[m]X[m], 1 ≤ � ≤ L, (9)

where {Y�[m]} are known but {H�[m]} and X[m] are unknown. Us-

ing the matrix annihilation property of Hl[m]’s in (5), we can prove

the following result.

Proposition 1 In a SIMO system with SCS channels, if the number of

sensors L is greater than or equal to the cardinality of the channel

support K, i.e.,

L ≥ K

and if there exists a subband of at least K + 3 continuous Fourier

coefficients such that X[m] �= 0 for m0 ≤ m < m0 + K + 3, then

the system can be fully resolved up to two free parameters, namely an

amplitude ambiguity e and a delay ambiguity τ .

Remark: The proposition indicates that a SIMO system can always

be fully resolved from the sensor measurements as long as we have

enough sensors in the system. The requirement that X[m] �= 0 at

K + 3 consecutive frequency indices are very mild. In fact, it holds

with probability one if the source signal X[m] is drawn from any con-

tinuous probability distribution.

Proof: For any m ∈ [m0,m0 +K + 2], we can rewrite (9) as

H�[m] = Y�[m]/X[m]. (10)

On substituting this equality into (5) and defining bk,m
def
= ak

X[m−k] ,

we get

K�

k=0

ak
Y�[m− k]
X[m− k]

=
K�

k=0

Y�[m− k]bk,m = 0. (11)

For every fixed m, (11) represents L different linear equations (for

1 ≤ � ≤ L) with K + 1 unknowns. Given L ≥ K, we can show
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that this system of linear homogeneous equations is always solvable,

up to an unknown factor dm. It follows that we can obtain �bk,m
def
=

dmbk,m = akdm
X[m−k] , or equivalently, in a matrix form,

�B =(�bk,m) =





a0dm
X[m]

a0dm+1

X[m+1]
a0dm+2

X[m+2] · · ·
a1dm

X[m−1]
a1dm+1

X[m]
a1dm+2

X[m+1] · · ·
a2dm

X[m−2]
a2dm+1

X[m−1]
a2dm+2

X[m] · · ·
.
.
.

.

.

.

.

.

.
. . .





=Λa





1
X[m]

1
X[m+1]

1
X[m+2] · · ·

1
X[m−1]

1
X[m]

1
X[m+1] · · ·

1
X[m−2]

1
X[m−1]

1
X[m] · · ·

.

.

.

.

.

.

.

.

.
. . .




Λd, (12)

where Λa and Λd are diagonal matrices with entries ak’s and dm’s,

respectively, and in the middle is a Toeplitz matrix.

Through simple manipulations of the terms in �B, we can verify

the following relation

�bk−1,m
�bk+1,m+1

�bk,m�bk,m+1

=
ak−1ak+1

a2
k

def
= sk, (13)

which, upon setting a0 = 1, can be used to solve for the rest of the

ak’s up to one degree of freedom, i.e.,

ak =

�
k−1�

j=1

sk−j
j

�
ak
1 . (14)

It can be shown that the unknown term ak
1 in the above expression

comes from the intrinsic ambiguity of time delay τ , and can be elimi-

nated by simply setting a1 = 1. We omit further details on this due to

space constraint.

With the annihilating coefficients {ak} obtained in (14), we can

compute the unknown exponents {uk} (and thus the time delay pa-

rameters {tk}) by factorizing the polynomial in (6). Finally, for fixed

{uk}, the input-output relation in (3) becomes a set of linear equa-

tions. The remaining unknowns (i.e.,

�
c(�)k

�
and X[m]) can then be

obtained by inverting this linear system. �

3.2. Generalizations to the MIMO Case

Now we consider a general MIMO system. In this case, the number

of unknowns (including I source signals and LI channels) is much

greater than that under the SIMO case (one source signal and L chan-

nels). To uniquely determine these parameters, we consider a multi-

frame setting, which can be realized by letting the sources send out

multiple frames, or more simply, by receiving a long sequence of sig-

nals and dividing them into frames on the sensor side. Given J con-

secutive frames, the relation (3) can be written as

�
Y

(1)[m] . . . Y
(J)[m]

�
= H[m]

�
X

(1)[m] . . . X
(J)[m]

�

where X
(j)[m] ∈ RI

and Y
(j)[m] ∈ RL

are, respectively, the input

and output signals at the jth frame.

In what follows, we make a mild assumption that the J vectors

{X(j)[m]}1≤j≤J are “rich” enough so that they span the entire space

RI
, i.e.,

span

�
X

(1)[m], . . . ,X(J)[m]
�
= RI . (15)

Under this assumption, the matrix
�
Y(1)[m] . . . Y(J)[m]

�
spans

the same subspace of RL
as the range space of the matrix H[m]. We

can then perform an SVD on
�
Y(1)[m] . . . Y(J)[m]

�
and obtain

an L-by-I matrix Z[m] whose columns are orthogonal and span the

range space of H[m]. It follows that there exists a non-singular I × I
matrix C[m] such that

Z[m]C[m] = H[m]. (16)

We note that the above equality is simply a matrix extension to (10),

where Z[m] (as obtained from the SVD of [Y(1)[m] · · ·Y(J)[m]])
is analogous to Y�[m], and C[m] (an unknown coefficient matrix) is

analogous to 1/X�[m]. Similar techniques to those used in the proof

of Proposition 1 can then be employed for solving the MIMO system.

Due to space constraint, we merely state the following proposition and

leave its proof to [10].

Proposition 2 In a MIMO system with SCS channels, let I be the

number of sources, L the number of sensors and K the cardinality of

the channel support. If

L ≥ KI,

and if there exists a subband of at least K+3I frequency indices such

that (15) holds for m0 + 1 ≤ m < m0 + K + 3I , then the MIMO

system can be fully resolved up to an amplitude ambiguity matrix E

and a delay ambiguity τ .

4. LOW-RATE SAMPLING SCHEME

We see from the requirements of Propositions 1 and 2 that the pro-

posed blind estimation algorithm only needs a small subband of sen-

sor measurements. Consequently, we can employ a similar approach

as used in [1] to derive a distributed low-rate sampling scheme, which

is summarized by the following proposition.

Proposition 3 Under the same condition as stated in Proposition 2,

perfect reconstruction on all the sensor measurements can be achieved

with probability one, given that we keep L ≥ KI sensor samples on

a subband of K + 3I frequency indices and L� ≥ I sensor samples

on all the other frequency indices.

Remark: This proposition indicates that dense sampling at all the sen-

sors is only required in a limited subband (of K + 3I frequency in-

dices). Beyond this subband, fewer sensor samples are required, and

we can still fully reconstruct all the sensor measurements at a central

receiver.

Proof: First consider a SIMO system. If we have K + 3 consecutive

frequency indices of L ≥ I sensors, Proposition 1 shows that we can

recover all the channel parameters. Given the recovered channel, we

only need one of the sensors to work on the other subband to estimate

the source signal.

Analogously, in MIMO systems, we can recover all the channel

parameters with L ≥ KI sensor samples on K + 3I consecutive

frequency indices, as shown in Proposition 2. After that, we only need

I sensor measurements on each frequency index to uniquely determine

the I source signals. �

5. NUMERICAL EXPERIMENT

In this section we verify the proposed blind estimation algorithm

through numerical experiments. In our simulations, we let ran-

domly generated source signals from a white Gaussian distribution

to go through the unknown channels, and the retrieved sensor mea-

surements are contaminated by additive white Gaussian noise. The

channel delay parameters {tk}Kk=1 are uniformly distributed and the

amplitude parameters

�
c(i,�)k

�K

k=1
have independent Gaussian distri-

butions. Reconstruction results are then directly compared with the

2. PRELIMINARIES

2.1. MIMO System Formulations

Consider a MIMO system with I sources x1, x2, . . . , xI and L sen-

sors y1, y2, . . . , yL. The signal measured at each sensor is the sum of

all source signals going through the corresponding channels, i.e.,

y�(t) =
I�

i=1

hi,�(t) ∗ xi(t), 1 ≤ � ≤ L, (2)

where {hi,�(t)} are the channel responses as defined in (1).

We suppose that all the signals are of finite-length and can thus

be extended to periodic signals, for some period T . By computing the

Fourier series on both sides of (2), we can write the frequency-domain

counterpart of (2) in a compact matrix-vector form

Y [m] = H[m]X[m], (3)

where X[m]
def
=

�
Xi[m]

�
I×1

,Y [m]
def
=

�
Y�[m]

�
L×1

and H[m]
def
=�

Hi,�[m]
�
L×I

1
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where uk
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filter, i.e., there exist a set of K+1 coefficients {ak}0≤k≤K such that
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akHi,�[m− k] = 0, for all m. (5)
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formed by the annihilating coefficients [8, 9], i.e.,
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The above expression implies that the annihilating coefficients {ak}
are fully determined by the exponents {uk} and are independent of the

weights
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c
(i,�)
k

�
in (4). In the SCS model, all the channel responses

have the same support, and therefore their Fourier transforms Hi,�[m]
share the same exponents {uk}. It follows that we can generalize the

classical annihilating filter in (5) to the following matrix form

K�

k=0

akH[m− k] = 0. (7)

This “matrix annihilation” formula captures all the SCS properties in

the MIMO system and will play an important role in the proposed

blind estimation algorithm described in Section 3.

2.3. Inherent Ambiguities

Given the sensor measurements Y [m] as defined in (3), our goal is

to simultaneously estimate the unknown source signals X[m] and the

unknown channels H[m], subject to the constraint that the channels

H[m] satisfy the SCS model as in (4).

To be clear, it is not possible to fully determine X[m] and H[m]
from the sensor measurements Y [m]. In fact, one can easily verify

1
Note that Hi,�[m] lies at the (�, i)-th position of matrix H[m].

the following from our mathematical formulation: If {X[m],H[m]}
is a solution to (3) with H[m] satisfying (4), then

{ξ−m
E

−1
X[m], ξmH[m]E} (8)

is also a valid solution, where E is an arbitrary non-singular constant

matrix and ξ
def
= e

j2πτ/T
for some τ ∈ R. In the time domain, the

phase term ξm in (8) points to an inherent ambiguity in time delay: We

can always set the sources and channels to {xi(t+ τ), hi,�(t− τ)}
for arbitrary τ without changing their convolution results. The ma-

trix E in (8) indicates that we can only reconstruct the coefficients of

{X[m],H[m]} up to the linear subspaces they expand.

Finally, we note that the above ambiguities become trivial for

single-input and multiple-output (SIMO) systems, as the matrix E de-

generates to a scalor. In this case, we aim to reconstruct the unknown

source and the channels up to a common time shift and a scalar multi-

plication.

3. THE PROPOSED BLIND ESTIMATION ALGORITHM

In this section, we present our blind estimation algorithm for sparse

MIMO systems with common support. For simplicity of exposition,

we first consider the SIMO case, which provides useful insight on

how to deal with the unknown multipath channels. We then discuss

the generalization to the MIMO case.

3.1. The SIMO Case

In a SIMO system, each output y�(t) is the result of a single source

signal x(t) going through the corresponding channel h�(t). It follows

that the Fourier domain system equation (3) can be simplified as
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the following result.
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coefficients such that X[m] �= 0 for m0 ≤ m < m0 + K + 3, then

the system can be fully resolved up to two free parameters, namely an
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Remark: The proposition indicates that a SIMO system can always

be fully resolved from the sensor measurements as long as we have

enough sensors in the system. The requirement that X[m] �= 0 at

K + 3 consecutive frequency indices are very mild. In fact, it holds

with probability one if the source signal X[m] is drawn from any con-

tinuous probability distribution.
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Considering a SIMO case

Extension to MIMO case

that this system of linear homogeneous equations is always solvable,

up to an unknown factor dm. It follows that we can obtain �bk,m
def
=

dmbk,m = akdm
X[m−k] , or equivalently, in a matrix form,

�B =(�bk,m) =
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Λd, (12)

where Λa and Λd are diagonal matrices with entries ak’s and dm’s,

respectively, and in the middle is a Toeplitz matrix.

Through simple manipulations of the terms in �B, we can verify

the following relation

�bk−1,m
�bk+1,m+1

�bk,m�bk,m+1

=
ak−1ak+1

a2
k

def
= sk, (13)

which, upon setting a0 = 1, can be used to solve for the rest of the

ak’s up to one degree of freedom, i.e.,

ak =

�
k−1�

j=1

sk−j
j

�
ak
1 . (14)

It can be shown that the unknown term ak
1 in the above expression

comes from the intrinsic ambiguity of time delay τ , and can be elimi-

nated by simply setting a1 = 1. We omit further details on this due to

space constraint.

With the annihilating coefficients {ak} obtained in (14), we can

compute the unknown exponents {uk} (and thus the time delay pa-

rameters {tk}) by factorizing the polynomial in (6). Finally, for fixed

{uk}, the input-output relation in (3) becomes a set of linear equa-

tions. The remaining unknowns (i.e.,

�
c(�)k

�
and X[m]) can then be

obtained by inverting this linear system. �

3.2. Generalizations to the MIMO Case

Now we consider a general MIMO system. In this case, the number

of unknowns (including I source signals and LI channels) is much

greater than that under the SIMO case (one source signal and L chan-

nels). To uniquely determine these parameters, we consider a multi-

frame setting, which can be realized by letting the sources send out

multiple frames, or more simply, by receiving a long sequence of sig-

nals and dividing them into frames on the sensor side. Given J con-

secutive frames, the relation (3) can be written as

�
Y

(1)[m] . . . Y
(J)[m]

�
= H[m]

�
X

(1)[m] . . . X
(J)[m]

�

where X
(j)[m] ∈ RI

and Y
(j)[m] ∈ RL

are, respectively, the input

and output signals at the jth frame.

In what follows, we make a mild assumption that the J vectors

{X(j)[m]}1≤j≤J are “rich” enough so that they span the entire space

RI
, i.e.,

span

�
X

(1)[m], . . . ,X(J)[m]
�
= RI . (15)

Under this assumption, the matrix
�
Y(1)[m] . . . Y(J)[m]

�
spans

the same subspace of RL
as the range space of the matrix H[m]. We

can then perform an SVD on
�
Y(1)[m] . . . Y(J)[m]

�
and obtain

an L-by-I matrix Z[m] whose columns are orthogonal and span the

range space of H[m]. It follows that there exists a non-singular I × I
matrix C[m] such that

Z[m]C[m] = H[m]. (16)

We note that the above equality is simply a matrix extension to (10),

where Z[m] (as obtained from the SVD of [Y(1)[m] · · ·Y(J)[m]])
is analogous to Y�[m], and C[m] (an unknown coefficient matrix) is

analogous to 1/X�[m]. Similar techniques to those used in the proof

of Proposition 1 can then be employed for solving the MIMO system.

Due to space constraint, we merely state the following proposition and

leave its proof to [10].

Proposition 2 In a MIMO system with SCS channels, let I be the

number of sources, L the number of sensors and K the cardinality of

the channel support. If

L ≥ KI,

and if there exists a subband of at least K+3I frequency indices such

that (15) holds for m0 + 1 ≤ m < m0 + K + 3I , then the MIMO

system can be fully resolved up to an amplitude ambiguity matrix E

and a delay ambiguity τ .

4. LOW-RATE SAMPLING SCHEME

We see from the requirements of Propositions 1 and 2 that the pro-

posed blind estimation algorithm only needs a small subband of sen-

sor measurements. Consequently, we can employ a similar approach

as used in [1] to derive a distributed low-rate sampling scheme, which

is summarized by the following proposition.

Proposition 3 Under the same condition as stated in Proposition 2,

perfect reconstruction on all the sensor measurements can be achieved

with probability one, given that we keep L ≥ KI sensor samples on

a subband of K + 3I frequency indices and L� ≥ I sensor samples

on all the other frequency indices.

Remark: This proposition indicates that dense sampling at all the sen-

sors is only required in a limited subband (of K + 3I frequency in-

dices). Beyond this subband, fewer sensor samples are required, and

we can still fully reconstruct all the sensor measurements at a central

receiver.

Proof: First consider a SIMO system. If we have K + 3 consecutive

frequency indices of L ≥ I sensors, Proposition 1 shows that we can

recover all the channel parameters. Given the recovered channel, we

only need one of the sensors to work on the other subband to estimate

the source signal.

Analogously, in MIMO systems, we can recover all the channel

parameters with L ≥ KI sensor samples on K + 3I consecutive

frequency indices, as shown in Proposition 2. After that, we only need

I sensor measurements on each frequency index to uniquely determine

the I source signals. �

5. NUMERICAL EXPERIMENT

In this section we verify the proposed blind estimation algorithm

through numerical experiments. In our simulations, we let ran-

domly generated source signals from a white Gaussian distribution
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ABSTRACT

The present paper proposes and studies an algorithm to estimate chan-
nels with a sparse common support (SCS). It is a generalization of
the classical sampling of signals with Finite Rate of Innovation (FRI)
[1] and thus called SCS-FRI. It is applicable to OFDM and Walsh-
Hadamard coded (CDMA downlink) communications since SCS-FRI
is shown to work not only on contiguous DFT pilots but also uniformly
scattered ones. The support estimation performances compare favorably
to theoretical lower-bounds, and importantly this translates into a sub-
stantial equalization gain at the receiver compared to the widely used
spectrum lowpass interpolation method.

Keywords— Channel estimation, MIMO, OFDM, CDMA, Finite
Rate of Innovation

1. INTRODUCTION

Modern communication devices have seen their number of antennas
cropping up. The rationals behind multiple output systems are linked
to the physical properties of the electromagnetic (EM) multipath chan-
nel [2]: different antennas witness diferent channel conditions. Under
this assumption, it seems natural to estimate each of these channels, and
then select the best one or a combination to achieve greater capacity than
a single output system.

Most multi-output EM multipath channels have a Sparse Common
Support (SCS) property, i.e. the paths’ Time of Arrivals (ToA) are the
same for every output up to a small error ≤ ε. Under this assumption,
we will outline a Finite Rate of Innovation (FRI) sampling [3] based al-
gorithm which takes advantage of the SCS property, conveniently called
SCS-FRI [4, 5]. Compared to other algorithms which also try to esti-
mate the channels from a subset of Fourier “probes” (such as lowpass
interpolation of the channel spectrum), SCS-FRI has four main advan-
tages. First, parametric estimation allows for joint recovery of the sup-
port common to the multiple outputs, independently of the paths am-
plitudes. Second, the number of probes used to sense the channel can
be reduced, saving precious bandwidth for data transmition. Third, for
an equal number of probes, channel estimation is more robust to noise
corruption, yielding a higher equalization gain. Last but not least, the
channel estimate is characterized by a very small set of parameters, sav-
ing some bandwidth for multiple input systems using non-blind transmit
diversity techniques [6], e.g. beamforming. SCS channels in a discrete
time setting were previously studied in [7] within the compressed sens-
ing framework.

We will first describe and motivate the SCS channel model and pro-
ceed with the description of the SCS-FRI algorithm. This algorithm
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Fig. 1. (a) Transmission over a medium with two scatterers and P re-
ceiving antennas. (b) The P channels contain two paths arriving at the
same time up to ±ε. The amplitudes of paths from a scatterer are (pos-
sibly correlated) Rayleigh variates [9].

uses baseband DFT pilots (probes) to solve the aforementioned estima-
tion problem. Within this setup, we will derive Cramér-Rao Bounds
(CRB) on the support estimation for both deterministic and Rayleigh
fading channels.

We will then show that SCS-FRI is not restricted to baseband DFT
pilots, and works equivalently well in the uniformely spaced (“scat-
tered”) DFT pilots layout ubiquitous in OFDM based communications.
Like other channel estimation techniques based on scattered pilots, the
only requirement is for the channel impulse response (CIR) to be rela-
tively short compared to the symbol duration.

Then we investigate the efficient use of other probing sequences. It
is shown that they must have the same span as a subset of DFT ba-
sis vectors to warrant the use of a DFT pilot based algorithm. Inter-
estingly, the set of Walsh-Hadamard sequences, used in most CDMA
based standards, verifies this property with the added benefit of provid-
ing uniformely scattered DFT pilots. This enables the use of SCS-FRI
on CDMA downlink channels as if they were OFDM coded channels.
All these equivalences allow to use the CRB derived in Section 4.

We conclude the study with numerical results showing the efficiency
of the SCS-FRI algorithm in a multi-output Rayleigh fading OFDM
setup, and the potential equalization gain compared to the industry stan-
dard which is lowpass interpolation of the CIR spectrum.

2. PROBLEM FORMULATION

Consider a bandpass channel of bandwidth B. The inverse bandwidth
1/B sets a limit on the distance at which two pulses of bandwidth B

Given: {y�(t)},
Estimate: {xi(t), hi,�(t)} .
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2. PRELIMINARIES

2.1. MIMO System Formulations

Consider a MIMO system with I sources x1, x2, . . . , xI and L sen-

sors y1, y2, . . . , yL. The signal measured at each sensor is the sum of

all source signals going through the corresponding channels, i.e.,

y�(t) =
I�

i=1

hi,�(t) ∗ xi(t), 1 ≤ � ≤ L, (2)

where {hi,�(t)} are the channel responses as defined in (1).

We suppose that all the signals are of finite-length and can thus

be extended to periodic signals, for some period T . By computing the

Fourier series on both sides of (2), we can write the frequency-domain

counterpart of (2) in a compact matrix-vector form

Y [m] = H[m]X[m], (3)

where X[m]
def
=
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Xi[m]

�
I×1

,Y [m]
def
=
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Y�[m]
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L×1

and H[m]
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denote the mth Fourier coefficients of the source sig-

nals, sensor measurements, and channel responses, respectively.

2.2. The SCS Model in the Fourier Domain

In the Fourier domain, the channel impulse responses of the SCS

model (1) can be written as

Hi,�[m] =
K�

k=1

c
(i,�)
k u

m
k , (4)

where uk
def
= e

−j2πtk/T . A fundamental property of these sum-of-

exponential signals is that they can be “annihilated” by a (K +1)-tap

filter, i.e., there exist a set of K+1 coefficients {ak}0≤k≤K such that

K�

k=0

akHi,�[m− k] = 0, for all m. (5)

Furthermore, the exponents {uk} are the roots of the polynomial

formed by the annihilating coefficients [8, 9], i.e.,

a0x
K + a1x

K−1 + . . .+ aK−1x+ aK = a0

K�

k=1

(x− uk). (6)

The above expression implies that the annihilating coefficients {ak}
are fully determined by the exponents {uk} and are independent of the

weights

�
c
(i,�)
k

�
in (4). In the SCS model, all the channel responses

have the same support, and therefore their Fourier transforms Hi,�[m]
share the same exponents {uk}. It follows that we can generalize the

classical annihilating filter in (5) to the following matrix form

K�

k=0

akH[m− k] = 0. (7)

This “matrix annihilation” formula captures all the SCS properties in

the MIMO system and will play an important role in the proposed

blind estimation algorithm described in Section 3.

2.3. Inherent Ambiguities

Given the sensor measurements Y [m] as defined in (3), our goal is

to simultaneously estimate the unknown source signals X[m] and the

unknown channels H[m], subject to the constraint that the channels

H[m] satisfy the SCS model as in (4).

To be clear, it is not possible to fully determine X[m] and H[m]
from the sensor measurements Y [m]. In fact, one can easily verify
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the following from our mathematical formulation: If {X[m],H[m]}
is a solution to (3) with H[m] satisfying (4), then

{ξ−m
E

−1
X[m], ξmH[m]E} (8)

is also a valid solution, where E is an arbitrary non-singular constant

matrix and ξ
def
= e

j2πτ/T
for some τ ∈ R. In the time domain, the

phase term ξm in (8) points to an inherent ambiguity in time delay: We

can always set the sources and channels to {xi(t+ τ), hi,�(t− τ)}
for arbitrary τ without changing their convolution results. The ma-

trix E in (8) indicates that we can only reconstruct the coefficients of

{X[m],H[m]} up to the linear subspaces they expand.

Finally, we note that the above ambiguities become trivial for

single-input and multiple-output (SIMO) systems, as the matrix E de-

generates to a scalor. In this case, we aim to reconstruct the unknown

source and the channels up to a common time shift and a scalar multi-

plication.

3. THE PROPOSED BLIND ESTIMATION ALGORITHM

In this section, we present our blind estimation algorithm for sparse

MIMO systems with common support. For simplicity of exposition,

we first consider the SIMO case, which provides useful insight on

how to deal with the unknown multipath channels. We then discuss

the generalization to the MIMO case.

3.1. The SIMO Case

In a SIMO system, each output y�(t) is the result of a single source

signal x(t) going through the corresponding channel h�(t). It follows

that the Fourier domain system equation (3) can be simplified as

Yl[m] = H�[m]X[m], 1 ≤ � ≤ L, (9)

where {Y�[m]} are known but {H�[m]} and X[m] are unknown. Us-

ing the matrix annihilation property of Hl[m]’s in (5), we can prove

the following result.

Proposition 1 In a SIMO system with SCS channels, if the number of

sensors L is greater than or equal to the cardinality of the channel

support K, i.e.,

L ≥ K

and if there exists a subband of at least K + 3 continuous Fourier

coefficients such that X[m] �= 0 for m0 ≤ m < m0 + K + 3, then

the system can be fully resolved up to two free parameters, namely an

amplitude ambiguity e and a delay ambiguity τ .

Remark: The proposition indicates that a SIMO system can always

be fully resolved from the sensor measurements as long as we have

enough sensors in the system. The requirement that X[m] �= 0 at

K + 3 consecutive frequency indices are very mild. In fact, it holds

with probability one if the source signal X[m] is drawn from any con-

tinuous probability distribution.

Proof: For any m ∈ [m0,m0 +K + 2], we can rewrite (9) as
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On substituting this equality into (5) and defining bk,m
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For every fixed m, (11) represents L different linear equations (for

1 ≤ � ≤ L) with K + 1 unknowns. Given L ≥ K, we can show
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that this system of linear homogeneous equations is always solvable,

up to an unknown factor dm. It follows that we can obtain �bk,m
def
=
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X[m−k] , or equivalently, in a matrix form,
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Λd, (12)

where Λa and Λd are diagonal matrices with entries ak’s and dm’s,

respectively, and in the middle is a Toeplitz matrix.

Through simple manipulations of the terms in �B, we can verify

the following relation

�bk−1,m
�bk+1,m+1

�bk,m�bk,m+1

=
ak−1ak+1

a2
k

def
= sk, (13)

which, upon setting a0 = 1, can be used to solve for the rest of the

ak’s up to one degree of freedom, i.e.,

ak =

�
k−1�

j=1

sk−j
j

�
ak
1 . (14)

It can be shown that the unknown term ak
1 in the above expression

comes from the intrinsic ambiguity of time delay τ , and can be elimi-

nated by simply setting a1 = 1. We omit further details on this due to

space constraint.

With the annihilating coefficients {ak} obtained in (14), we can

compute the unknown exponents {uk} (and thus the time delay pa-

rameters {tk}) by factorizing the polynomial in (6). Finally, for fixed

{uk}, the input-output relation in (3) becomes a set of linear equa-

tions. The remaining unknowns (i.e.,

�
c(�)k

�
and X[m]) can then be

obtained by inverting this linear system. �

3.2. Generalizations to the MIMO Case

Now we consider a general MIMO system. In this case, the number

of unknowns (including I source signals and LI channels) is much

greater than that under the SIMO case (one source signal and L chan-

nels). To uniquely determine these parameters, we consider a multi-

frame setting, which can be realized by letting the sources send out

multiple frames, or more simply, by receiving a long sequence of sig-

nals and dividing them into frames on the sensor side. Given J con-

secutive frames, the relation (3) can be written as

�
Y

(1)[m] . . . Y
(J)[m]

�
= H[m]

�
X

(1)[m] . . . X
(J)[m]

�

where X
(j)[m] ∈ RI

and Y
(j)[m] ∈ RL

are, respectively, the input

and output signals at the jth frame.

In what follows, we make a mild assumption that the J vectors

{X(j)[m]}1≤j≤J are “rich” enough so that they span the entire space

RI
, i.e.,

span

�
X

(1)[m], . . . ,X(J)[m]
�
= RI . (15)

Under this assumption, the matrix
�
Y(1)[m] . . . Y(J)[m]

�
spans

the same subspace of RL
as the range space of the matrix H[m]. We

can then perform an SVD on
�
Y(1)[m] . . . Y(J)[m]

�
and obtain

an L-by-I matrix Z[m] whose columns are orthogonal and span the

range space of H[m]. It follows that there exists a non-singular I × I
matrix C[m] such that

Z[m]C[m] = H[m]. (16)

We note that the above equality is simply a matrix extension to (10),

where Z[m] (as obtained from the SVD of [Y(1)[m] · · ·Y(J)[m]])
is analogous to Y�[m], and C[m] (an unknown coefficient matrix) is

analogous to 1/X�[m]. Similar techniques to those used in the proof

of Proposition 1 can then be employed for solving the MIMO system.

Due to space constraint, we merely state the following proposition and

leave its proof to [10].

Proposition 2 In a MIMO system with SCS channels, let I be the

number of sources, L the number of sensors and K the cardinality of

the channel support. If

L ≥ KI,

and if there exists a subband of at least K+3I frequency indices such

that (15) holds for m0 + 1 ≤ m < m0 + K + 3I , then the MIMO

system can be fully resolved up to an amplitude ambiguity matrix E

and a delay ambiguity τ .

4. LOW-RATE SAMPLING SCHEME

We see from the requirements of Propositions 1 and 2 that the pro-

posed blind estimation algorithm only needs a small subband of sen-

sor measurements. Consequently, we can employ a similar approach

as used in [1] to derive a distributed low-rate sampling scheme, which

is summarized by the following proposition.

Proposition 3 Under the same condition as stated in Proposition 2,

perfect reconstruction on all the sensor measurements can be achieved

with probability one, given that we keep L ≥ KI sensor samples on

a subband of K + 3I frequency indices and L� ≥ I sensor samples

on all the other frequency indices.

Remark: This proposition indicates that dense sampling at all the sen-

sors is only required in a limited subband (of K + 3I frequency in-

dices). Beyond this subband, fewer sensor samples are required, and

we can still fully reconstruct all the sensor measurements at a central

receiver.

Proof: First consider a SIMO system. If we have K + 3 consecutive

frequency indices of L ≥ I sensors, Proposition 1 shows that we can

recover all the channel parameters. Given the recovered channel, we

only need one of the sensors to work on the other subband to estimate

the source signal.

Analogously, in MIMO systems, we can recover all the channel

parameters with L ≥ KI sensor samples on K + 3I consecutive

frequency indices, as shown in Proposition 2. After that, we only need

I sensor measurements on each frequency index to uniquely determine

the I source signals. �

5. NUMERICAL EXPERIMENT

In this section we verify the proposed blind estimation algorithm

through numerical experiments. In our simulations, we let ran-

domly generated source signals from a white Gaussian distribution

to go through the unknown channels, and the retrieved sensor mea-

surements are contaminated by additive white Gaussian noise. The

channel delay parameters {tk}Kk=1 are uniformly distributed and the

amplitude parameters

�
c(i,�)k

�K

k=1
have independent Gaussian distri-

butions. Reconstruction results are then directly compared with the
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ABSTRACT
We present a blind estimation algorithm for multi-input and multi-
output (MIMO) systems with sparse common support. Key to the pro-
posed algorithm is a matrix generalization of the classical annihilating
filter technique, which allows us to estimate the nonlinear parameters
of the channels through an efficient and noniterative procedure. An
attractive property of the proposed algorithm is that it only needs the
sensor measurements at a narrow frequency band. By exploiting this
feature, we can derive efficient sub-Nyquist sampling schemes which
significantly reduce the number of samples that need to be retained
at each sensor. Numerical simulations verify the accuracy of the pro-
posed estimation algorithm and its robustness in the presence of noise.

Index Terms— Blind channel estimation, MIMO systems, dis-
tributed sensing, low-rate sampling, annihilating filters

1. INTRODUCTION

Consider a multiple-input and multiple output (MIMO) system shown
in Figure 1, where L sensors take measurements of signals generated
by I sources. Connecting the sources to the sensors is a set of LI
channels, denoted by their impulse responses {hi,�(t)}. We study
two problems in this work:

1. Blind estimation: If neither the source signals nor the channel
information are known a priori, to what extent can one recover these
quantities from only the sensor measurements?

2. Low-rate sampling: Intuitively, when the number of sensors is
much greater than the number of sources (i.e., L � I), the signals
acquired at different sensors are highly correlated. Can one make use
of this correlation to reduce the sampling rate at each sensor?

The MIMO setup described above appears in numerous applica-
tions. In wireless communication systems, several antennas can send
out signals that are received by multiple users or multiple antennas
of a single user. The channel states are usually unknown and can
change (slowly) over time. To probe the channels, a common ap-
proach is to periodically send out known training (“pilot”) signals
[1, 2]. The success of this channel estimation scheme requires co-
operation and accurate synchronization between all the sources and
receivers, whose difficulty makes blind estimation a very attractive al-
ternative. The MIMO setup in Figure 1 also models many distributed
sensing schemes using wireless sensor networks (e.g., sound acquisi-
tion, underwater target tracking, and binaural hearing aids). In these
applications, the channels can only be estimated in a blind fashion,
as there is no coordination between the sources and receivers. Fur-
thermore, the distributed nature of the sensors and the resulting tight
energy budget make it highly desirable to explore low-rate sampling
schemes, which can help reduce the amount of data that need to be
transmitted through the network.

Blind estimation of MIMO systems has been previously studied
in the literature. Existing approaches either exploit statistical priors

Multipath environment

Fig. 1. A MIMO system where I sources and L sensors are linked
through a collection of LI channels {hi,�(t)}.

on the sources (see, e.g., [3]), or impose deterministic constraints on
the unknown channels [4, 5]. In this work, we do not assume any
knowledge on the source signals, and instead impose constraints on
the channels. More specifically, we consider the case that all channels
are sparse and have some common support, i.e.,

hi,�(t) =
K�

k=1

c(i,�)k δ(t− tk), (1)

where
�
c(i,�)k

�K

k=1
are the unknown coefficients of the impulse re-

sponse linking the ith source to the �th sensor, and {tk}Kk=1 are the
unknown common support of all the channels.

The sparse common support (SCS) model [6, 2] is a reasonable
assumption for many real-world channels. Sparsity is often observed
in multipath environments, where each individual path gives rise to an
impulse in the channel response function [1, 7]. The common support
assumption is relevant when the distances between sensors are much
smaller than distance traveled by the electromagnetic (or sound) wave
in a time related to the inverse signal bandwidth (see [2] for a more
detailed justification). In this case, certain frequency subbands of the
channel response functions are well approximated by the SCS model,
even though the full channel response functions might not agree with
this assumption.

The rest of the paper is organized as follows. After a precise def-
inition of the MIMO system and SCS model in Section 2, we present
two main contributions in this paper: Section 3 describes a novel blind
estimation algorithm based on generalized annihilating filters [8, 9];
The proposed algorithm only requires a small number of frequency
samples of the sensor measurements, and therefore naturally leads to
a distributed low-rate sampling scheme, which we briefly discuss in
Section 4. Numerical results in Section 5 verify the effectiveness of
the proposed algorithm and its robustness under a wide range of chan-
nel noise levels. We conclude the paper in Section 6.

2. PRELIMINARIES

2.1. MIMO System Formulations

Consider a MIMO system with I sources x1, x2, . . . , xI and L sen-

sors y1, y2, . . . , yL. The signal measured at each sensor is the sum of

all source signals going through the corresponding channels, i.e.,

y�(t) =
I�

i=1

hi,�(t) ∗ xi(t), 1 ≤ � ≤ L, (2)

where {hi,�(t)} are the channel responses as defined in (1).

We suppose that all the signals are of finite-length and can thus

be extended to periodic signals, for some period T . By computing the

Fourier series on both sides of (2), we can write the frequency-domain

counterpart of (2) in a compact matrix-vector form

Y [m] = H[m]X[m], (3)

where X[m]
def
=

�
Xi[m]

�
I×1

,Y [m]
def
=

�
Y�[m]

�
L×1

and H[m]
def
=�

Hi,�[m]
�
L×I

1
denote the mth Fourier coefficients of the source sig-

nals, sensor measurements, and channel responses, respectively.

2.2. The SCS Model in the Fourier Domain

In the Fourier domain, the channel impulse responses of the SCS

model (1) can be written as

Hi,�[m] =
K�

k=1

c
(i,�)
k u

m
k , (4)

where uk
def
= e

−j2πtk/T . A fundamental property of these sum-of-

exponential signals is that they can be “annihilated” by a (K +1)-tap

filter, i.e., there exist a set of K+1 coefficients {ak}0≤k≤K such that

K�

k=0

akHi,�[m− k] = 0, for all m. (5)

Furthermore, the exponents {uk} are the roots of the polynomial

formed by the annihilating coefficients [8, 9], i.e.,

a0x
K + a1x

K−1 + . . .+ aK−1x+ aK = a0

K�

k=1

(x− uk). (6)

The above expression implies that the annihilating coefficients {ak}
are fully determined by the exponents {uk} and are independent of the

weights

�
c
(i,�)
k

�
in (4). In the SCS model, all the channel responses

have the same support, and therefore their Fourier transforms Hi,�[m]
share the same exponents {uk}. It follows that we can generalize the

classical annihilating filter in (5) to the following matrix form

K�

k=0

akH[m− k] = 0. (7)

This “matrix annihilation” formula captures all the SCS properties in

the MIMO system and will play an important role in the proposed

blind estimation algorithm described in Section 3.

2.3. Inherent Ambiguities

Given the sensor measurements Y [m] as defined in (3), our goal is

to simultaneously estimate the unknown source signals X[m] and the

unknown channels H[m], subject to the constraint that the channels

H[m] satisfy the SCS model as in (4).

To be clear, it is not possible to fully determine X[m] and H[m]
from the sensor measurements Y [m]. In fact, one can easily verify

1
Note that Hi,�[m] lies at the (�, i)-th position of matrix H[m].

the following from our mathematical formulation: If {X[m],H[m]}
is a solution to (3) with H[m] satisfying (4), then

{ξ−m
E

−1
X[m], ξmH[m]E} (8)

is also a valid solution, where E is an arbitrary non-singular constant

matrix and ξ
def
= e

j2πτ/T
for some τ ∈ R. In the time domain, the

phase term ξm in (8) points to an inherent ambiguity in time delay: We

can always set the sources and channels to {xi(t+ τ), hi,�(t− τ)}
for arbitrary τ without changing their convolution results. The ma-

trix E in (8) indicates that we can only reconstruct the coefficients of

{X[m],H[m]} up to the linear subspaces they expand.

Finally, we note that the above ambiguities become trivial for

single-input and multiple-output (SIMO) systems, as the matrix E de-

generates to a scalor. In this case, we aim to reconstruct the unknown

source and the channels up to a common time shift and a scalar multi-

plication.

3. THE PROPOSED BLIND ESTIMATION ALGORITHM

In this section, we present our blind estimation algorithm for sparse

MIMO systems with common support. For simplicity of exposition,

we first consider the SIMO case, which provides useful insight on

how to deal with the unknown multipath channels. We then discuss

the generalization to the MIMO case.

3.1. The SIMO Case

In a SIMO system, each output y�(t) is the result of a single source

signal x(t) going through the corresponding channel h�(t). It follows

that the Fourier domain system equation (3) can be simplified as

Yl[m] = H�[m]X[m], 1 ≤ � ≤ L, (9)

where {Y�[m]} are known but {H�[m]} and X[m] are unknown. Us-

ing the matrix annihilation property of Hl[m]’s in (5), we can prove

the following result.

Proposition 1 In a SIMO system with SCS channels, if the number of

sensors L is greater than or equal to the cardinality of the channel

support K, i.e.,

L ≥ K

and if there exists a subband of at least K + 3 continuous Fourier

coefficients such that X[m] �= 0 for m0 ≤ m < m0 + K + 3, then

the system can be fully resolved up to two free parameters, namely an

amplitude ambiguity e and a delay ambiguity τ .

Remark: The proposition indicates that a SIMO system can always

be fully resolved from the sensor measurements as long as we have

enough sensors in the system. The requirement that X[m] �= 0 at

K + 3 consecutive frequency indices are very mild. In fact, it holds

with probability one if the source signal X[m] is drawn from any con-

tinuous probability distribution.

Proof: For any m ∈ [m0,m0 +K + 2], we can rewrite (9) as

H�[m] = Y�[m]/X[m]. (10)

On substituting this equality into (5) and defining bk,m
def
= ak

X[m−k] ,

we get

K�

k=0

ak
Y�[m− k]
X[m− k]

=
K�

k=0

Y�[m− k]bk,m = 0. (11)

For every fixed m, (11) represents L different linear equations (for

1 ≤ � ≤ L) with K + 1 unknowns. Given L ≥ K, we can show
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3.1. The SIMO Case

In a SIMO system, each output y�(t) is the result of a single source

signal x(t) going through the corresponding channel h�(t). It follows

that the Fourier domain system equation (3) can be simplified as

Yl[m] = H�[m]X[m], 1 ≤ � ≤ L, (9)

where {Y�[m]} are known but {H�[m]} and X[m] are unknown. Us-

ing the matrix annihilation property of Hl[m]’s in (5), we can prove

the following result.

Proposition 1 In a SIMO system with SCS channels, if the number of

sensors L is greater than or equal to the cardinality of the channel

support K, i.e.,

L ≥ K

and if there exists a subband of at least K + 3 continuous Fourier

coefficients such that X[m] �= 0 for m0 ≤ m < m0 + K + 3, then

the system can be fully resolved up to two free parameters, namely an

amplitude ambiguity e and a delay ambiguity τ .

Remark: The proposition indicates that a SIMO system can always

be fully resolved from the sensor measurements as long as we have

enough sensors in the system. The requirement that X[m] �= 0 at

K + 3 consecutive frequency indices are very mild. In fact, it holds

with probability one if the source signal X[m] is drawn from any con-

tinuous probability distribution.

Proof: For any m ∈ [m0,m0 +K + 2], we can rewrite (9) as

H�[m] = Y�[m]/X[m]. (10)

On substituting this equality into (5) and defining bk,m
def
= ak

X[m−k] ,

we get

K�

k=0

ak
Y�[m− k]
X[m− k]

=
K�

k=0

Y�[m− k]bk,m = 0. (11)

For every fixed m, (11) represents L different linear equations (for

1 ≤ � ≤ L) with K + 1 unknowns. Given L ≥ K, we can show

Reconstruction result of a MIMO system. Experiments are 
performed 100 times at each SNR point, and the box plots 
show the median (red lines), 25th and 75th percentile (blue 
boxes) and the extreme data points (black lines).

Reconstruction result of a SIMO system by three different 
approaches. The first (blue, bottom) uses estimated time 
directly; the second (red, middle) uses optimized time by a 
nonlinear minimization; and the last (cyan, top) uses the 
ground truth time.
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II. PRELIMINARIES

A. MIMO System Formulations

Consider a MIMO system with I sources x1, x2, . . . , xI and L sensors y1, y2, . . . , yL. The signal

measured at each sensor is the sum of all source signals going through the corresponding channels, i.e.,

y�(t) =
I�

i=1

hi,�(t) ∗ xi(t), 1 ≤ � ≤ L, (2)

where {hi,�(t)} are the channel responses as defined in (1).

We suppose that all the signals are of finite-length and can thus be extended to periodic signals, for

some period T . By computing the Fourier series on both sides of (2), we can write the frequency-domain

counterpart of (2) in a compact matrix-vector form

Y [m] = H[m]X[m], (3)

where X[m]
def
=

�
Xi[m]

�
I×1

,Y [m]
def
=

�
Y�[m]

�
L×1

and H[m]
def
=

�
Hi,�[m]

�
L×I

1
denote the mth Fourier

coefficients of the source signals, sensor measurements, and channel responses, respectively.

B. The Sparse and Common Support Model

The sparse common support (SCS) model (1) assumes that the response functions are composed of

sparse impulses δ(t − tk) whose support set {tk}Kk=1 are common for all channels. We argue that this

assumption is a good approximation for most electromagnetic multipath systems, whose sensors are not

too far away or the band limit is not too high.

Consider a bandpass channel with bandlimit B (see Figure 2). By the time-frequency uncertainty

principle, the minimum time resolution ∆t should satisfy

∆Ω ·∆t ≥ 1

2
, i.e., ∆t ≥ 1

2∆Ω
=

1

4πB
. (4)

In other words, the output system cannot distinguish delay difference less than
1

4πB . On the other hand,

suppose the maximum distance between the sensors is d, then the delay difference recieved by the sensors

will be

∆tk ≤ d

c
, ∀1 ≤ k ≤ K (5)

1
Note that Hi,�[m] lies in the (�, i)-th position of matrix H[m].
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ABSTRACT

The present paper proposes and studies an algorithm to estimate chan-
nels with a sparse common support (SCS). It is a generalization of
the classical sampling of signals with Finite Rate of Innovation (FRI)
[1] and thus called SCS-FRI. It is applicable to OFDM and Walsh-
Hadamard coded (CDMA downlink) communications since SCS-FRI
is shown to work not only on contiguous DFT pilots but also uniformly
scattered ones. The support estimation performances compare favorably
to theoretical lower-bounds, and importantly this translates into a sub-
stantial equalization gain at the receiver compared to the widely used
spectrum lowpass interpolation method.

Keywords— Channel estimation, MIMO, OFDM, CDMA, Finite
Rate of Innovation

1. INTRODUCTION

Modern communication devices have seen their number of antennas
cropping up. The rationals behind multiple output systems are linked
to the physical properties of the electromagnetic (EM) multipath chan-
nel [2]: different antennas witness diferent channel conditions. Under
this assumption, it seems natural to estimate each of these channels, and
then select the best one or a combination to achieve greater capacity than
a single output system.

Most multi-output EM multipath channels have a Sparse Common
Support (SCS) property, i.e. the paths’ Time of Arrivals (ToA) are the
same for every output up to a small error ≤ ε. Under this assumption,
we will outline a Finite Rate of Innovation (FRI) sampling [3] based al-
gorithm which takes advantage of the SCS property, conveniently called
SCS-FRI [4, 5]. Compared to other algorithms which also try to esti-
mate the channels from a subset of Fourier “probes” (such as lowpass
interpolation of the channel spectrum), SCS-FRI has four main advan-
tages. First, parametric estimation allows for joint recovery of the sup-
port common to the multiple outputs, independently of the paths am-
plitudes. Second, the number of probes used to sense the channel can
be reduced, saving precious bandwidth for data transmition. Third, for
an equal number of probes, channel estimation is more robust to noise
corruption, yielding a higher equalization gain. Last but not least, the
channel estimate is characterized by a very small set of parameters, sav-
ing some bandwidth for multiple input systems using non-blind transmit
diversity techniques [6], e.g. beamforming. SCS channels in a discrete
time setting were previously studied in [7] within the compressed sens-
ing framework.

We will first describe and motivate the SCS channel model and pro-
ceed with the description of the SCS-FRI algorithm. This algorithm

M. Vetterli is also with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720, USA. This re-
search is supported by Qualcomm Inc., ERC Advanced Grant Support for Fron-

tier Research - SPARSAM Nr : 247006 and SNF Grant - New Sampling Methods

for Processing and Communication Nr : 200021-121935/1.
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Fig. 1. (a) Transmission over a medium with two scatterers and P re-
ceiving antennas. (b) The P channels contain two paths arriving at the
same time up to ±ε. The amplitudes of paths from a scatterer are (pos-
sibly correlated) Rayleigh variates [9].

uses baseband DFT pilots (probes) to solve the aforementioned estima-
tion problem. Within this setup, we will derive Cramér-Rao Bounds
(CRB) on the support estimation for both deterministic and Rayleigh
fading channels.

We will then show that SCS-FRI is not restricted to baseband DFT
pilots, and works equivalently well in the uniformely spaced (“scat-
tered”) DFT pilots layout ubiquitous in OFDM based communications.
Like other channel estimation techniques based on scattered pilots, the
only requirement is for the channel impulse response (CIR) to be rela-
tively short compared to the symbol duration.

Then we investigate the efficient use of other probing sequences. It
is shown that they must have the same span as a subset of DFT ba-
sis vectors to warrant the use of a DFT pilot based algorithm. Inter-
estingly, the set of Walsh-Hadamard sequences, used in most CDMA
based standards, verifies this property with the added benefit of provid-
ing uniformely scattered DFT pilots. This enables the use of SCS-FRI
on CDMA downlink channels as if they were OFDM coded channels.
All these equivalences allow to use the CRB derived in Section 4.

We conclude the study with numerical results showing the efficiency
of the SCS-FRI algorithm in a multi-output Rayleigh fading OFDM
setup, and the potential equalization gain compared to the industry stan-
dard which is lowpass interpolation of the CIR spectrum.

2. PROBLEM FORMULATION

Consider a bandpass channel of bandwidth B. The inverse bandwidth
1/B sets a limit on the distance at which two pulses of bandwidth B

Fig. 2. A multipath channel with two scatters and P receiving antennas. The SCS model assumes that the channel response

functions share the same impulse supports, which can be satisfied if the antennas are not too far away so that the arriving time

of the two path is close to each other within ±�. [XY: borrowed from Barbotin’s paper, need to draw one for ourself ]

where c is the speed of electromagnetic wave traveling in the media, typically around 3× 108. In order

to have support difference ∆tk ignorable, we need to have

∆tk � ∆t ⇐=
d

c
� 1

4πB
, i.e. d ·B � c

4π
≈ 2.4× 107 (m/s) (6)

This relation is ubiquitously satisfied in modern communication system (say 3GPP LTE standard [XY:

Citation needed] where B ≤ 20 MHz and antenna size d � 1m), or in a distributed sampling scheme

([XY: Example needed] where B ≤ 20 kHz and sensor distance d � 1 km).

In the Fourier domain, the channel impulse responses of the SCS model (1) can be written as

Hi,�[m] =
K�

k=1

c
(i,�)
k u

m
k , (7)

where uk
def
= e

−j2πtk/T .

A fundamental property of these sum-of-exponential signals is that they can be “annihilated” by a

(K + 1)-tap filter, i.e., there exist a set of K + 1 coefficients {ak}0≤k≤K such that
K�

k=0

akHi,�[m− k] = 0, for all m. (8)

Furthermore, the annihilating filter coefficients are shared by all channels, giving rise to a more generalized

matrix annihilating filter formulation described in the following section.

January 24, 2012 DRAFT

Wednesday, March 21, 2012


