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Abstract

Analyzing images to infer physical scene properties is a fundamental task in computer vision. It is

by nature an ill-posed inverse problem, because imaging is a complicated, information-lossy physical

andmeasurement process that cannot be deterministically inverted. This dissertation presents theory

and algorithms for handling ambiguities in a variety of low-level vision problems. They are based on

two key ideas: (1) explicitlymodeling and reporting uncertainties are beneficial to visual inference; and

(2) using local models can significantly reduce ambiguities that would exist in pixelwise analysis.

In the first part of the dissertation, we study the color measurement pipeline of consumer digital

cameras, and consider the inherent uncertainty of undoing the effects of tone-mapping. We intro-

duce statistical models for this uncertainty and algorithms for fitting it to given cameras or imaging

pipelines. Once fit, the model provides for each tone-mapped color a probability distribution over

linear scene colors that could have induced it, which is demonstrated to be useful for a number of

downstream inference applications.

In the second part of the dissertation, we study the pixelwise ambiguities in physics-based visual

inference and present theory and algorithms for employing local models to eliminate or reduce these

ambiguities. In shape from shading, we perform mathematical analysis showing that when restricted

with quadratic local models, the shape and lighting ambiguities will be reduced to a small finite num-

ber of choices as opposed to otherwise continuous manifolds. We propose a framework for surface

reconstruction by enforcing consensus on the local regions, which is later enhanced and extended to

be applicable to a variety of other visual inference tasks.
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1
Introduction

Imaging is a complicated physical and measurement process: light emitted from the source interacts

with objects according to their geometry andmaterial properties, gets absorbed, reflected or refracted,

and some reaches the capturing device (e.g. a camera), which is itself a complex system that performs a

number of processing steps before converting the count of photons into final recordedmeasurements

(e.g. an sRGB image). In a very general sense, the process can be written as the following equation:

image = fcamera
(
finteraction(illumination, material, geometry)

)
(1.1)

The inference of scene properties from recorded images is an inverse problem in which the image

is given as input and physical properties such as illumination,material and/or geometry are the
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output. This inverse problem is almost always ill-posed, because the imaging processes fcamera and

finteraction have information loss. In other words, for a given image, there could bemore than one—in

fact, usually a large number of—scene combinations that can explain the input equally well. There-

fore, a reasonable inference theory or algorithm needs to account for this ambiguity, for example, by

exploiting prior knowledge of the physical properties, and/or by reporting the uncertainties to down-

stream applications (which potentially have more information to make better judgements).

The scope of this dissertation is in physics-based visual inference, also known as “low-level com-

puter vision”. We will focus on explicitly modeling the physical or measurement process of image

formation, including light-objection interactions and color processing pipeline inside consumer dig-

ital cameras. The outputs of our methods are “property maps” that have the same dimension as the

input images and try to explain the formation of each individual pixel, e.g. a normal vector map in

shape from shading, a disparity map for binary stereo, or a linear color image (with uncertainty) for

inverse tone-mapping. This is in contrast to “high-level computer vision” approaches which have dif-

ferent goals such as object detection or scene recognition and are generally ignorant or invariant to the

exact details of physical process that creates the image.

Low-level vision has a wide range of applications by itself, and can also support and improve high-

level vision. Reliably recovering linear scene colors from sRGB images facilitates accurate appearance

models for recognition (e.g. plant species identification by color), improves radiometric reasoning for

tasks like shadow and/or glare removal, and benefits applications such as three-dimensional (3D) re-

construction and virtual tourism that rely on matching and extracting photometric signals. Estimat-

ing the depth and/or motion from images (shape from shading, binocular stereo and optical flow)

significantly enhances the capabilities of artificial intelligent systems such as robotic navigation and

manipulation, autonomous or assisted driving and abnormal events detection. Many algorithms in

physics-based visual inference are inspired by biological visual systems, and studying these algorithms

might in turn improve our understanding to biological vision, such as human visual perception.
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Figure 1.1: Clusters of linear color (RAW)measurements that eachmap to a single sRGB color value (indicated in paren-

theses) in a digital SLR camera (Canon EOS 40D). Close-ups of the clusters emphasize the variations in cluster size and

orientation. When inverting the tone-mapping process, this is structured uncertainty that cannot be avoided.

1.1 Information Loss in Camera Color Processing

The first part of this dissertation will examine the color processing pipeline of consumer digital cam-

eras. This process, denoted as the fcamera(·) function in Equation (1.1), is the last step of the image

formation and therefore the first task for the inverse problemof inference. Aswill be detailed inChap-

ter 2 (also see Figure 1.1), consumer digital cameras impose significant distortion and compression to

the incoming signals received by their sensors in order to produce a compact and visually pleasing

sRGB image for storage and display. The quantization during the process makes the inversion from

a compact sRGB image back to linear scene colors impossible, and in this sense information is lost.

This information loss is not always a big problem. For example, in high-level vision tasks such as

object detection and recognition, the variation in pose and/or category of the object ismore significant

than the distortion imposed by the camera color pipeline itself, and the algorithms for such tasks are

intentionally designed to be invariant to all such differences in order to extract the higher-level abstrac-

tion. Also, some applications such as robotics can afford amore dedicate and better controlled camera

that can minimize or even eliminate the distortion, and therefore avoid the problem itself. However,
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for low-level vision tasks that use images produced by consumer digital cameras and/or shared on the

internet to study the scene properties by explicitly reasoning about the image formation process, the

distortion on the camera side is important and worth accounting for.

In this dissertation, we will analyze typical consumer color rendering processing pipelines to un-

derstand the source and reason of this distortion and information loss, and present a probabilistic

algorithm that undoes such distortion and reports the associated uncertainty. We will show that

physics-based visual inference can substantially benefit from such a probabilistic de-rendering step

when working on compact sRGB images produced by consumer digital cameras. More details can be

found in Chapter 2 of this dissertation.

1.2 Pixelwise Ambiguity and Inference with Local Regions

In the second part of the dissertation, we will focus on visual inference regarding the physical interac-

tion of light and objects in the scene, i.e. the finteraction(·, ·, ·) function in Equation (1.1), assuming the

effect of fcamera(·) function has already been inverted with the uncertainties properly accounted for.

The key observation in this part of the dissertation is that physics-based inference is usually pixelwise

ambiguous and it is usually beneficial to perform such inference on regions of appropriate sizes. More

specifically, in most scenarios, it is not possible to infer the unique scene property from a single pixel

measurement of the input image, because multiple different properties can explain the pixel measure-

ment equally well. However, we will present theory and algorithms showing that by considering a

bigger neighborhood of image data, the ambiguity can be significantly reduced by applying proper

local models, and furthermore, the remaining ambiguity can be explicitly characterized and used in a

global reasoning framework to accurately recover the entire scene property map.

One physics-based inference problem we consider is Lambertian shape from shading, in which

the intensity of a pixel is assumed to be the dot product of directional lighting and surface normal:

I = n · l. It is easy to see that looking at the intensity of a single pixel I , even with a known lighting

4



Figure 1.2: Pixelwise stereo matching is ambiguous because the pixel in one view can potentially match many pixels

equally well on the other view. Performing thematch by local regionswill significantly reduce such ambiguity, as long as

the regions are ``of the right size'' that contain enough contextual information but does not cross disparity boundary.

l and in the absence of noise, the normal vector n can still not be uniquely determined and possi-

ble values form a one-dimensional cone around l (or a conic curve on on the projective plane). In

Chapter 3 of the dissertation, we prove that by looking at a larger image region (say a 5×5 square

patch) and assuming a quadratic local model, the lighting and surface can be tightly restricted, say to

a four-way choice instead of a continuous 5D manifold. We also analyze the possible implication of

noise in the inference process, and show that the possible shapes can still be effectively restricted to a

low-dimensional manifold when considering modest amount of noise.

Another inference problem discussed in this dissertation is binocular stereo matching. As shown

in Figure 1.2, trying to match the image intensities pixelwise from one view to another is usually noisy

and unreliable, as pixel in one image can potentially have many possible good matches on the other

view. Performing the matching with local regions is a common technique used to reduce such ambi-

guity, and one needs to select the regions of the right size such that they contain enough contextual

information but also are not too big as to cross disparity boundaries. In Chapter 4, we introduce a

multi-scale framework that simultaneously decide which regions are of the right size for inference,

and for regions of the right size, find their best local model parameters.

5



1.3 Citations to Previously Published Work

Thedissertation is organized such that each chapter contains a “relatedwork” sectiondescribing relevent

references to that chapter. In this section, we list a few citations to my own published work that com-

pose most of this dissertation.

Most of Chapter 2 has been published as

• Ying Xiong, Kate Saenko, Travor Darrell and Todd Zickler. “From pixels to physics: Prob-

abilistic color de-rendering”. Computer Vision and Pattern Recognition, IEEE Conference

on, 2012.

• Ayan Chakrabarti, Ying Xiong, Baochen Sun, Trevor Darrell, Daniel Scharstein, Todd Zick-

ler and Kate Saenko. “Modeling radiometric uncertainty for vision with tone-mapped color

images”. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2014.

Most of Chapter 3 has been published as

• YingXiong, AyanChakrabarti, Ronen Basri, Steven JGortler, DavidW Jacobs andToddZick-

ler. “From shading to local shape”. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 2015.

A significant portion of Chapter 4 has been published as

• Ayan Chakrabarti, Ying Xiong, Steven J. Gortler, Todd Zickler. “Low-level Vision by Con-

sensus in a Spatial Hierarchy of Regions”. Computer Vision and Pattern Recognition, IEEE

Conference on, 2015.

Note that someof thework is in collaborationwithDr. AyanChakrabarti. This dissertationmostly

contains contributions made primarily by myself. Contributions lead by Dr. Ayan Chakrabarti are

also included but described in less detail, particularly, in Section 2.3.3, Section 3.5.2 and Section 4.5.
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2
Probabilistic Color De-rendering

2.1 Introduction

Most digital images produced by consumer cameras and shared online exist in narrow-gamut, low-

dynamic range formats.1 This is efficient for storage, transmission, and display, but it is unfortunate

for computer vision systems that seek to interpret this data radiometrically when learning object ap-

pearancemodels for recognition, reconstructing scenemodels for virtual tourism, or performing other

visual taskswith Internet images. Indeed,most computer vision algorithms are based, either implicitly

or explicitly, on the assumption that image measurements are proportional to the spectral radiance of

the scene (called scene color hereafter), andwhen a consumer camera renders its digital linear colormea-

1Typically sRGB color space with JPEG encoding: IEC 10918-1:1994 and IEC 61966-2-1:1999
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Figure 2.1: RAWand JPEG values for different exposures of the same spectral scene radiance collected by a consumer

digital camera (DMC-LX3, Panasonic Inc.), along with normalized-RGB visualizations of the reported JPEG colors at a

subset of exposures. Apart from sensor saturation, RAW values are linear in exposure and proportional to spectral ir-

radiance; but narrow-gamut JPEG values are severely distorted by tone-mapping. Given only JPEG values, what can

we say about the unknown RAW values---and thus the scene color---that induced it? How can we use all of the JPEG

color information, including when some JPEG channels are saturated (regions A and C)?We answer these questions by

providing a confidence level for eachRAWestimate (bottomplot), which can benefit radiometry-based computer vision.

surements to a narrow-gamut output color space (called rendered color hereafter), this proportionality

is almost always destroyed. Figure 2.1 shows an example.

Existing approaches to color de-rendering attempt to undo the effects of a camera’s color processing

pipeline through “radiometric calibration” [13, 51, 56], in which rendered colors (i.e., those reported

in a camera’s JPEG output) are reverse-mapped to corresponding scene colors (i.e., those that would

have been reported by the same camera’s RAW output) using a learned deterministic function. This

approach is unreliable, because it ignores the inherent uncertainty causedby the loss of information. A

typical camera rendersmanydistinct sensormeasurements to the same small neighborhoodof narrow-

8
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Figure 2.2: 3D visualization of color rendering. The black cube indicates the set of possible RAWcolor sensormeasure-

ments, and the red parallelepiped shows the boundary of the output sRGB gamut towhich all RAWcolorsmust be tone-

mapped.2Left: Data fromFigure2.1,withblackcircles thescenecolorxatdifferentexposuretimes. CorrespondingRAW

values x̃ (magenta) are clipped due to sensor saturation, and they are tone-mapped to rendered colorsy (blue) within

theoutput sRGBgamut. Right: Renderedcolors (blue) in small neighborhoodsof (127, 127, 127)and(253, 253, 253)
in a JPEG image, connected (through cyan lines) to their corresponding RAWmeasurements (magenta).

gamut output colors (see Figure 2.2, right) and, once these output colors are quantized, the reverse

mapping becomes one-to-many in some regions and cannot be deterministically undone.

How can we know which predictions are unreliable? As supported by Figure 2.2, one expects the

one-to-many effect to be greatest near the edges of the output gamut (i.e., near zero or 255 in an 8-bit

JPEG file), and practitioners try to mitigate it using heuristics such as ignoring all JPEG pixels having

values above or below certain thresholds in one ormore of their channels. This trick improves the reli-

ability of deterministic radiometric calibration, but it raises the question of how to choose thresholds

for a given camera. (“Should I only discard pixels with values 0 or 255, or should I be more conser-

vative?”)3 A more fundamental concern is that this heuristic works by discarding information that

would otherwise be useful. Referring to Figure 2.1, such a heuristic would ignore all JPEG measure-

2The boundary of the output sRGB gamut is determined automatically from image data in two steps. The
edge directions of the parallelepiped are extracted from RAW metadata using dcraw[12], and then its scale is
computed as a robust fit to RAW-JPEG correspondences.

3Our experiments in Figure 2.1 and those of [49] reveal significant variation between models and suggest
the answer is often the latter.
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ments in regions A and C, even though these clearly tell us something about the latent scene color.

To overcome these limitations, we introduce two probabilistic approaches for de-rendering. These

methods produce from each rendered (JPEG) color a probability distribution over the (wide gamut,

high dynamic range) scene colors that could have induced it. They rely on an offline calibration pro-

cedure involving registered RAW and JPEG image pairs, and from these infer a statistical relationship

between rendered colors and scene colors. The first approach uses a local Gaussian Process (GP) to

perform regression from rendered colors to scene colors. The second approach, developed in a collab-

oration work lead by Ayan Chakrabarti [9], learns a deterministic forwardmapping from scene colors

to rendered colors and then does a probabilistic inverse by analyzing the conditional distribution of

scene colors given a rendered color based on learned forward mapping. Both approaches provide a

measure of confidence, based on the variance of the output distribution, for every predicted scene

color, thereby eliminating the need for heuristic thresholds and making better use of the scene radi-

ance information that is embedded in an Internet image. The offline calibration procedure is required

only once for each different imagingmode of each camera, thusmany per-camera de-renderingmodels

could be stored in an online database and accessed on demand using camera model and mode infor-

mation embedded in the metadata of an Internet image.4

We evaluate our approach in a few different ways. First, we assess our ability to recover wide-

gamut scene colors from JPEG sRGB observations in different consumer cameras. Next, we employ

our probabilistic de-renderingmodel in relatively straightforward probabilistic adaptations of two es-

tablished applications: high-dynamic range imaging with an exposure-stack of images (e.g., [51]) and

three-dimensional reconstruction via Lambertian photometric stereo (e.g., [85]). In all cases, a prob-

abilistic approach significantly improves our ability to infer radiometric scene structure from tone-

mapped images.

4As has been done for lens distortion by PTLens (accessed Mar 27, 2012):
http://www.epaperpress.com/ptlens/

10
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2.2 Related Work

The problem of radiometric calibration, where the goal is inverting non-linear distortions of scene

radiance that occur during image capture and rendering, has received considerable attention in com-

puter vision. Until recently, this calibration has been formulated only for grayscale images, or for color

images on a per-channel-basis by assuming that the “radiometric response function” in each channel

acts independently [51, 56, 13, 23]. While early variants of this approach parametrized these response

functions simply as an exponentiation (or “gamma correction”) with the exponent as a single model

parameter, later work sought to improve modeling accuracy by considering more general polynomial

forms [23]. Since thesemodels have a relatively small number of parameters, they have featured in sev-

eral algorithms for “self-calibration”—parameter estimation from images captured in the wild, with-

out calibration targets—through analysis of edge profiles [50, 78], image statistics [18, 45], or exposure

stacks of images [51, 56, 13, 22, 69, 73].

However, per-channel models cannot accurately model the color processing pipelines of most con-

sumer cameras,where the linear sensormeasurements span amuchwider gamut than the target output

format. To be able to generate images that “look good” on limited-gamut displays, these cameras com-

press out-of-gamut and high-luminance colors in ways that are as pleasing as possible, for example by

preserving hue. This means that two scene colors with the same raw sensor value in their red channels

can have very different red values in their mapped JPEG output if oneRAWcolor is significantlymore

saturated than the other.

Chakrabarti et al. [8] investigated the accuracy of more general, cross-channel parametric forms

for global tone-mapping in a number of consumer cameras, including multi-variate polynomials and

combinations of cross-channel linear transforms with per-channel polynomials. While they found

reasonable fits for most cameras, the residual errors remained relatively high even though the calibra-

tion and evaluation were both limited to images of a single relatively narrow-gamut chart. Kim et
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al. [39] improved on this by explicitly reasoning about the mapping of out-of-gamut colors. Their

model consists of a cascade of: a linear transform, a per-channel polynomial, and a cross-channel cor-

rection for out-of-gamut colors using radial basis functions. The forward tone-map model we use in

Section 2.3.3 is strongly motivated by this work, although we find a need to augment the calibration

training data so that it better covers the full space of measurable RAW values.

All of these approaches are focussedonmodeling thedistortion introducedbyglobal tone-mapping.

They do not, however, consider the associated loss of information, nor the structured uncertainty

that exists when the distortion is undone as a pre-process for radiometric reasoning by vision systems.

Indeed, while the benefit of undoing radiometric distortion has been discussed in the context of var-

ious vision applications (e.g., deblurring [10, 78], high-dynamic range imaging [60], video segmenta-

tion [24]), previousmethods have relied exclusively ondeterministic inverse tone-maps that ignore the

structured uncertainty evident in Figures 2.2. Themain goal of this of this paper is to demonstrate that

the benefits of undoing radiometric distortion can bemade significantly greater by explicitlymodeling

the uncertainty inherent to inverse tone-mapping, and by propagating this uncertainty to subsequent

visual inference algorithms.

Finally, we note that our proposed framework applies to stationary, global tone-mapping processes,

meaning those that operate on each pixel independent of its neighboring pixels, and are unchanging

from scene to scene. This is applicable to many existing consumer cameras locked into fixed imaging

modes (“portrait”, “landscape” etc.), but not to local tone-mapping operators that are commonly used

for HDR tone-mapping.

2.3 Probabilistic De-rendering Models

We begin with a model for the forward color processing pipeline of a typical consumer digital camera;

then we describe two approaches to represent and fit the reverse mapping. The models in this section

ignore secondary effects such as de-mosaicking, flare removal, noise removal, sharpening, etc., since
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Figure 2.3: The forward color processing model used in this chapter, along with our notation for it. Lesser effects, such

as flare removal, de-mosaicking, and vignetting are ignored and treated as noise.

these have significantly less impact on the output than non-linear tone-mapping. More details on

these issues can be found elsewhere [8, 5, 65, 31].

An important assumptionunderlyingourmodel is that the forward renderingoperation is spatially-

uniform, meaning that its effect on a RAW color vector is the same regardless of where it occurs on

the image plane. This assumption is shared by almost all de-rendering techniques and is reasonable

at present; but if spatially-varying tone-mapping operators become more common, relaxing this as-

sumption may become a useful direction for future work.

2.3.1 Forward (Rendering) Model

Referring to Figure 2.3, the forward model begins with three idealized spectral sensors with sensitiv-

ity profiles {πc(λ)}c=R,G,B that sample the spectral irradiance incident on the sensor plane. These

sensors are idealized in that they do not saturate and have infinite dynamic range, and we refer to

their output x = {xc}c=R,G,B as the scene color. Practical sensors have limited dynamic range, so

scene colors are clipped as they are recorded. In some consumer cameras these recorded sensor mea-

surements x̃ = {x̃c}c=R,G,B are made available through a RAW output format, and in others they

only exist internally. Empirical studies suggest that the RAW values (in the absence of clipping) are

proportional to incident irradiance and related by a linear transform to measurements that would be

obtained by the CIE standard observer [8, 5, 38] (also see Figure 2.1). For this reason, they provide
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a “relative scene-referred image” [27] and can be used directly by computer vision systems to reason

about spectral irradiance.

Two linear transforms are applied to the sensor measurements. The first (W ) is scene-dependent

and induces white balance, and the second (C) is a fixed transformation to an internal working color

space. Then, most importantly, the linearly transformed RAW values CW x̃ are rendered to colors

y = {yc}c=R,G,B in thenarrow-gamut output sRGBcolor space through anon-linearmapf: R3 →

R3. This map has evolved to produce visually-pleasing results at the expense of physical accuracy,

and since the quality of a camera’s color rendering process plays a significant role in determining its

commercial value, there is a dis-incentive for manufacturers to share its details. In ourmodel, the map

f includes the per-channel non-linearity that is part of the sRGB standard (IEC 61966-2-1:1999).

The left of Figure 2.2 shows signal values at various stages of this forward model for a consumer

camera (DMC-LX3, Panasonic Inc.). Recall that the black box in this plot represents the range of

possible RAW values x̃, and the red parallelepiped marks the boundary of the output sRGB gamut.

The plot shows color signals produced using different exposure times for a simple static scene con-

sisting of a uniform planar patch under constant illumination, with spatial-averaging over all patch

pixels to thoroughly suppress the effects of noise, demosaicking, and JPEG compression. The scene

colors x (black) lie a line that extends well beyond the cube as the exposure time grows large, and the

chromaticity of the patch is such that all scene colors lie outside the sRGB gamut. The wide-gamut

RAW values x̃ (magenta) are very close to these scene colors for low exposures, but they are clipped

for longer exposures when the intensity grows large. The rendered colors y = f(CW x̃) (blue) lie

within the output gamut, and are significantly affected by the combined effects of sensor saturation,

white balance, and the color space transform. Interestingly, these rendered colors are relatively far in-

side the boundary of the sRGB gamut, so the conventional wisdom in radiometric calibration that

one should discard pixels with very small or very large JPEG values as being “clipped” is unlikely to

detect and properly treat them.
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2.3.2 Inverse (De-rendering) Model with Gaussian Process

Our goal is to infer, for each possible rendered color y, the original scene color x that created it. As

information is lost in the forward rendering process, exact recovery is not possible and thus any de-

terministic function that predicts a single point estimate is bound to be wrong much of the time. For

that reason, we propose to estimate a distribution over the space of possible scene colors. Specifically,

we seek a representation of p(x|y) from which we can either obtain a MAP estimate of x or directly

employ Bayesian inference as desired for a given application (see Section 2.4.1 and Section 2.4.2).

We model the underlying de-rendering function, denoted z, using Gaussian process (GP) regres-

sion [68]. Given a training set {D = (yi,xi), i = 1, · · · , N}, composed of inputs yi and noisy

outputs xi, we model the outputs {xci}c=R,G,B in each channel separately as coming from a latent

function zc that has a prior distribution described by a GP, and is corrupted by additive noise ϵi:

xci = zc(yi) + ϵi, ϵi ∝ N (0, σ2
n). (2.1)

The latent function z serves as the inverse of the forward rendering map composed of the color ren-

dering function, color transform, and white balance operations depicted in Figure 2.3. We will learn

it using images in which the white balance has been fixed to remove scene-dependence.

The classicGP regressionparadigmuses a single set of hyper-parameters controlling the smoothness

of the inferred function. However, our analysis of camera data has revealed that such globally-defined

(i.e., stationary) smoothness is inadequate because there is significantly different behavior in different

regions of the sRGB gamut (see right of Figure 2.2.) Instead, the variance of z should be allowed to

vary over local neighborhoods of the sRGB color space.

Several extensions to the classic GP have been proposed to model input-varying noise [67, 80, 54].

Here, we employ a local GP regression model, which exploits the observation that, for compact radial

covariance functions, only the points close to a test point have significant influence on the results [80].
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Given a training dataset and a test point, the method identifies a local neighborhood of the test point,

and performs prediction with the model either pre-trained based on some local cluster (“offline local

GP”), or learned on the fly using neighbor points just detected (“online local GP”).5 More precisely,

given training setD and a test sRGB colory, we infer a test distribution of RAWvaluesx conditioned

on y by identifying a local neighborhood of y inD, denotedDN(y), and computing

px(x|y) =
∏
c

pGP (x
c|DN(y),y), (2.2)

where pGP (x|D,y) is the conditional GP likelihood of x using training dataD for sRGB colors y.

2.3.3 Probablistic Inverse of a Learned Forward Mapping

In a more recent collaboration work lead by Ayan Chakrabarti, we present a new de-rendering ap-

proach that first learns a forward mapping from rendered colors to scene colors, and then probabilis-

tically invert it by analyzing the conditional distribution of possible scene colors that could have pro-

duced a given rendered color. We briefly summarize the approach in this section, and refer interested

readers to [9] for more details.

We model the forward mapping J : x → y with a two-step approach: (1) a linear transform fol-

lowed and independent per-channel polynomial; followedby (2) a correction to account for deviations

5To handlemultimodality in themapping, [80] shows how clusteringmay be performed in both input and
output spaces for the training data, and a set of local regressors returned. However we believe that our inverse
map does not have multimodal structure, and we found that a single local regressor provided adequate results.
Implementation details with regard to online and offline models are described in Section 2.5.
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in the rendering of saturated and out-of-gamut colors.

ỹ =


ỹR

ỹG

ỹB

 =


f(vT

Rx)

f(vT
Gx)

f(vT
Bx)

 , (2.3)

y = Q

B(ỹ) +


g1(ỹ)

g2(ỹ)

g3(ỹ)


 , (2.4)

where vR,vG,vB ∈ R3 define a linear color space transform, B(·) bounds its argument to the

range [0, 255], andQ(·) quantizes its arguments to 8-bit integers. The per-channel non-linearity f(·)

is modeled with a polynomial of degree d:

f(x) =

d∑
i=0

αix
i. (2.5)

Motivated by the observations in [39], this polynomial model is augmented with an additive correc-

tion function g(·) in (2.4) to account for deviations that result from camera processing to improve the

visual appearance of rendered colors. We use support-vector regression (SVR) with a Gaussian radial

basis function (RBF) kernel to model these deviations, i.e., each gc(·), c ∈ {R,G,B} is of the form:

gc(ỹ) =
∑
i

λc:i exp
(
−γc∥ỹ − yc:i∥2

)
. (2.6)

Once having the forward model J(·), we can characterize all scene colors x that will be rendered

into a given color y, i.e. all x such that J(x) = y. Considering the fact that J(·) itself is learned from

training data, we add some slack for calibration error and treat the term ∥y−J(x)∥ as Gaussian noise

with variance σ2
f , which leads to a conditional distribution of scene colors x given a rendered color y:
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p(x|y) = 1

Z
p(x) exp

(
−∥y − J(x)∥2

2σ2
f

)
, (2.7)

whereZ is the normalization factor

Z =

∫
p(x′) exp

(
−∥y − J(x′)∥2

2σ2
f

)
dx′, (2.8)

and p(x) is a prior on sensor-measurements, which is assumed to be uniform over all possible sensor

measurements in this chapter.

We can compute the mean and variance of this conditional distribution as

µ(y) =

∫
xp(x|y)dx, (2.9)

Σ(y) =

∫
(x− µ(y))(x− µ(y))T p(x|y)dx. (2.10)

The integrations in are performed numerically, and by storing pre-computed values of J on a densely-

sampled grid to speed up distance computations. Note that here µ(y), in addition to being the mean

of the conditional distribution, is also the single best estimate of x given y (in the minimum least-

squares error sense) from the exact distribution in (2.7). And since (2.7) is derived using a camera

model similar to that of [39], µ(y) can be interpreted as the deterministic RAW estimate that would

be yielded by the algorithm in [39].

Furthermore, we can use (µ(y),Σ(y)) to approximate the conditional distribution of scene colors

x given a rendered color y as a multi-variate Gaussian, i.e.

p(x|y) ≈ N (x;µ(y),Σ(y)). (2.11)

In this sense the output by this approach can be thought as a more general version of the local GP

18



output (2.2) described in the previous section, because the covariance matrixΣ(y) is a general 3× 3

matrix where as (2.2) implies a diagonal covariance matrix. In the rest of this paper, when describing a

general approach using the photometric uncertainty (Section 2.4), we are ignorant of which approach

is used to estimate the uncertainty; when evaluating on datasets (Section 2.5), we use the approach

described in this section instead of local GP because the general covariance matrix is more flexible in

capturing the true conditional distribution of scene colors and therefore produces higher estimation

accuracy compared to the diagonal one.

2.4 Working with Photometric Uncertainty

Linear measurements of scene radiance are crucial for many computer vision tasks (shape from shad-

ing, image-based rendering, deblurring, color constancy, intrinsic images, etc.), and the output of our

de-rendering model can be readily used in probabilistic approaches to these tasks. Here we describe

two such tasks and show how modeling photometric uncertainty leads to more robust results.

2.4.1 Probabilistic Wide Gamut Imaging

Many applications that use Internet images operate by inferring radiometric scene properties from

multiple observations of the same scene point. For example, multiple observations under different

illuminations can be exploited for inferring diffuse object color [59] or more general BRDFs [25].

To explore the benefits of modeling photometric uncertainty in such cases, we consider an example

scenariomotivated by traditionalHDR imagingwith exposure stacks [51, 13]. Given as inputmultiple

exposures of the same stationary scene, we seek to combine them into one floating-point, HDR, and

wide-gamut image.

Assume we are given a sequence of sRGB vectors captured at shutter speeds of {α1, α2, . . . , αN}

seconds. Represent these by {y1, . . . ,yN}. We would like to predict the RAW color, x0 say, that

would have been obtained with a shutter speed of α0 seconds. Note that α0 need not be one of the
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shutter speeds used to capture the sRGB input.

Given a training setD, for each sRGB valueywe estimate the conditional distributions pxi(xi|yi)

for the RAW value xi that would have been obtained with shutter speed αi. Then, to obtain x0, we

combine them using

px0(x0|y1, . . . ,yN ) =
∏
i

px0(x0|yi) =
∏
i

αi

α0
pxi

(
αi

α0
x0|yi

)
. (2.12)

Since each channel pxi(xi|yi) is modeled as a Gaussian distribution, the conditional distribution

px0(x0|y1, . . . ,yN ) =
∏

i px0(x0|yi) will be Gaussian as well. Our output for x0, therefore, is

the mean and variance of this Gaussian distribution.

This application reveals the power of a probabilistic model: it provides a distribution rather than

a point estimate. For applications that combine multiple independent measurements, this provides a

natural way to assign more weight to the estimates that have smaller variance.

2.4.2 Probabilistic Lambertian Photometric Stereo

When illumination varies, another way that multiple observations of the same scene can be used is to

recover lighting information and/or scene geometry. This may be useful when using Internet images

for weather recovery [72], geometric camera calibration [46], or 3D reconstruction [1]. To quanti-

tatively assess the utility of uncertainty modeling in these types of applications we consider the toy

problem of recovering from JPEG images three-dimensional scene shape using Lambertian photo-

metric stereo.

Lambertian photometric stereo is a technique for estimating the surface normals of a Lambertian

object byobserving that object under different lighting conditions and a fixed viewpoint [85]. Suppose

there are N different directional lighting conditions, with li ∈ R3 the direction and strength of the

ith source. Consider a single color channel of single pixel in the image plane; denote by Ii the linear
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intensity recorded in that channel under the ith light direction; and let n ∈ S2 and ρ ∈ R+ be

the normal direction and the albedo of the surface patch at the back-projection of this pixel. The

Lambertian reflectance model provides the relation ρ⟨li,n⟩ = Ii, and the goal of photometric stereo

is to infer the material ρ and shape n given the set {li, Ii}.

Defining a pseudo-normal b ≜ ρn, the relation between the observed intensity and the scene

parameters becomes

lTi b = Ii. (2.13)

Given three or more {li, Ii}-pairs, the traditional Lambertian photometric stereo estimates pseudo-

normal b (and thus ρ and n) in a least-squares sense:

b = (LTL)−1LT I, (2.14)

whereL and I are the matrix and vector formed by stacking the light directions li and measurements

Ii, respectively.

The linear relation between intensity I and scene radiance is crucial in photometric stereo. One

can use RAW measurements when they are available, but for Internet-based vision tasks that rely on

sRGB images, onemust first de-render the colors to achieve this linearity. In our case, the de-rendering

result for each pixel is described as a Gaussian random variable Ii ∼ N (µi, σ
2
i ), and Eq. (2.13) can be

re-written as

lTi b = µi + σiϵi, ϵi ∼ N (0, 1). (2.15)

From this it follows (e.g., [29]) that the maximum likelihood estimate of the pseudo-normal b is ob-

tained through weighted least-squares, with weights given by the reciprocal of the variance. That is,

b = (LTWL)−1LTWµ, with W = diag{σ−2
i }Ni=1. (2.16)
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Once again we see that distributions provided by a probabilistic de-rendering system can be em-

ployed very naturally to selectively weight measurements for improved accuracy and robustness.

2.5 Evaluation

Our database consists of images captured using a number of popular consumer cameras, using an X-

Rite 140-patch color checker chart as the calibration target as in [8] and [39]. However, although the

chart contains a reasonably wide gamut of colors, these colors only span a part of the space of possible

RAW values that can be measured by a camera sensor. To be able to reliably fit the behavior of each

camera’s tone-mapping function in the full space ofmeasurable scene colors, and to accurately evaluate

the quality of these fits, we captured images of the chart under sixteen different illuminants (we used a

standardTungsten bulb pairedwith different commercially available gel-based color filters) to obtain a

significantly wider gamut of colors. Moreover, for each illuminant, we captured images with different

exposure values that range from one where almost all patches are under-exposed to one where all are

over-exposed. We expect this collection of images to represent an exhaustive set that includes the full

gamut of irradiances likely to be present in a scene.

Most of the cameras in our dataset allow access to the RAW sensor measurements, and therefore

directly give us a set of RAW-JPEG pairs for training and evaluation. For JPEG-only cameras, we

captured a corresponding set of images using a RAW-capable camera. To use the RAW values from

the second camera as a valid proxy, we had to account for the fact that the exposure steps in the two

cameras were differently scaled (but available from the image metadata), and for the possibility that

theRAWproxy values in some casesmay be clippedwhile those recorded by the JPEG camera’s sensors

were not. Therefore, the exposure stack for each patch under each illuminant from the RAW camera

was used to estimate the underlying scene color at a canonical exposure value, and these were then

mapped to the exposure values from the JPEG camera without clipping.
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Camera Name
Deterministic Inverse Prob. Inverse Prob. Inverse Prob. Inverse Prob. Inverse
Uniform 8k samples Uniform 8k samples 10 Exp., 2 Illum. 4 Exp., 4 Illum. 8 Exp., 4 Illum.

Panasonic DMC LX3 3.50 12.44 6.19 11.87 12.17
Canon EOS 40D 3.45 13.06 -0.18 11.87 12.22

Canon PowerShot G9 2.01 8.33 7.12 7.80 8.16
Canon PowerShot S90 3.83 11.34 10.47 10.96 10.91

Nikon D7000 1.59 8.52 6.20 3.45 8.28

Table 2.1: Mean Empirical log-Likelihoods under InverseModels for RAW-capable Cameras.

Camera Name Deterministic Inverse Prob. Inverse

Fujifilm J10 1.97 8.69
Panasonic DMC LZ8 1.60 11.83
Samsung Galaxy S3 2.23 7.51

Table 2.2: Mean Empirical log-Likelihoods for JPEG-only Cameras.

2.5.1 De-rendering

To begin, we demonstrate the benefit of using probabilistic de-rendering to hallucinate scene colors

from a single narrow-gamut sRGB image. We report the mean empirical log-likelihood, i.e., the mean

value of log p(x|y) across all RAW-JPEG pairs (x,y) in the validation set, for our set of calibrated

cameras. For comparison, the log-likelihood scores from a deterministic inverse that outputs single

prediction (µ(y) from (2.9)) for the RAW value for a given JPEG is also reported. Note that strictly

speaking, the log-likelihood in this case would be −∞ unless µ(y) is exactly equal to x. The scores

reported in Tables 2.1 and 2.2 are therefore computed by using a Gaussian distribution with variance

equal to themean prediction error (which is the choice that yields themaximummean log-likelihood).

We find that these scores are much lower than those from the probabilistic model, demonstrating its

benefits in the de-rendering task.

For RAW-capable cameras, we also experimented our de-rendering model using different subsets

of collected RAW-JPEG pairs. The first of these subsets is simply constructed with 8000 random

RAW-JPEG pairs sampled uniformly across all pairs, and as expected, this yields the best results. Since
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capturing such a large dataset to calibrate any given camera may be practically burdensome, we also

consider subsets derived from a limited number of illuminants, and with a limited number of expo-

sures per-illuminant. The exposures are equally spaced from the lowest to the highest, and the subset

of illuminants are chosen so as to maximize the diversity of included chromaticities— specifically, we

order the illuminants such that for each n, the convex hull of the RAWR-G chromaticities of patches

from the first n illuminants has the largest possible area. The results show that different cameras have

different degrees of sensitivity to diversity in exposures and illuminants, but using four illuminants

with eight exposures represents a reasonable acquisition burden while also providing enough diver-

sity for reliable calibration in all cameras.

2.5.2 Wide Gamut Imaging

To experimentally compare reconstruction quality of the deterministic and probabilistic approaches

in the wide gamut imaging application, we use all RAW-JPEG color-pairs from the database of colors

captured with the Panasonic DMC LX-3, corresponding to all color-pairs except those from the four

training illuminants. We consider the color checker under a particular illuminant to be the target

HDR scene, and we consider the differently-exposed JPEG images under that illuminant to be the

input images of this scene. The task is to estimate for each target scene (each illuminant) the true

linear patch color from only two differently-exposed JPEG images. The true linear patch color for

each illuminant is computed using RAWdata from all exposures, and performance is measured using

relative RMSE:

Error(x,xtrue) =
∥x− xtrue∥
∥xtrue∥

. (2.17)

Figure 2.4 shows a histogram of the reduction in RMSE values when using the probabilistic ap-

proach. This is the histogram of differences between evaluating (2.17) with probabilistic and deter-

ministic estimates x across 1680 distinct linear scene colors in the dataset and all possible un-ordered
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Figure 2.4: Wide gamut imaging results on the Panasonic DMCLX3. (Left) Histogram of improvement in errors over the

deterministic baseline for all scene colors using every possible exposure pair. (Right) Mean errors across all colors for

each approachwhen using different exposure pairs.

pairs of 22 exposures6 as input, excluding the trivial pairs for which α1 = α2 (a total of 388080 test

cases). In a vast majority of cases, incorporating derendering uncertainty leads to better performance.

We also show in the right of the figure, for both the deterministic and probabilistic approaches,

two-dimensional visualizations of the error for each exposure-pair. Each point in these visualizations

corresponds to a pair of input exposure values (α1, α2), and the pseudo-color depicts themeanRMSE

across all 1680 linear scene colors in the test dataset. (Diagonal entries correspond to estimates from a

single exposure, and are thus identical for the probabilistic and deterministic approaches). We see that

the probabilistic approach yields acceptable estimates with low errors for a larger set of exposure-pairs.

Moreover, in many cases it leads to lower error than those from either exposure taken individually,

demonstrating that the probabilistic modeling is not simply selecting the better exposure, but in fact

combining complementary information from both observations.

2.5.3 Photometric Stereo

Finally, we evaluate our model in the context of probabilistic Lambertian photometric stereo. We

use JPEG images of a figurine captured using the Canon EOS 40D from a fixed viewpoint under

6These correspond to the different exposure time stops available on the camera: [5e−4, 6.25e−4, 1e−3,
1.25e−3, 2e−3, 2.5e−3, 3.13e−3, 5e−3, 6.25e−3, 1e−2, 1.26e−2, 1.67e−2, 2e−2, 2.5e−2, 3.33e−2,
4e−2, 5e−2, 6.67e−2, 1e−1, 2e−1, 4e−1, 1] in relative time units.
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Figure 2.5: Photometric stereo results using the Canon EOS 40D. (Left) Histogram of the improvement in angular error

ofnormalestimate. (Right)Oneof theJPEGimagesusedduringestimation, andangularerror (indegrees) for thenormals

estimated using the deterministic and probabilistic approaches, along with the corresponding depthmaps.

directional lighting from ten different known directions. At each pixel, we discard the brightest and

darkest measurements to avoid possible specular highlights and shadows, and use the rest to estimate

the surface normal. The camera takes RAW images simultaneously, which are used to recover surface

normals that we treat as ground truth.

Figure 2.5 shows the angular error map for normal estimates using the proposed method, as well

as the deterministic baseline. We also show the corresponding depth maps obtained from the normal

estimates using [19]. The proposed probabilistic approach produces smaller normal estimate errors

and fewer reconstruction artifacts than the deterministic algorithm—quantitatively, themean angular

error is 4.34◦ for the probabilistic approach, and 6.46◦ for the deterministic baseline. We also ran the

reconstruction algorithm on inverse estimates computed by simple gamma-correction on the JPEG

values (a gamma parameter of 2.2 is assumed). These estimates had amuch highermean error 14.65◦.
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2.6 Conclusion

Most images captured and shared online are not in linear (RAW) formats, but are instead in narrow-

gamut (sRGB) formats with colors that are severely distorted by cameras’ color rendering processes.

In order for computer vision systems tomaximally exploit the color information in these images, they

must first undo the color distortions as much as possible. This chapter advocates a probabilistic ap-

proach to color de-rendering, one that embraces the multivalued nature of the de-rendering map by

providing for each rendered sRGB color a distribution over the latent linear scene colors that could

have induced it. An advantage of this approach is that it does not require discarding any image data

using ad-hoc thresholds. Instead, it allows making use of all rendered color information by providing

for each de-rendered color a measure of its uncertainty.

Our experimental results suggest that a probabilistic representation can be useful when combining

per-image estimates of linear scene color, and when recovering the shape of Lambertian surfaces via

photometry. The output of our approach—amean and variance over scene colors for each sRGB im-

age color—may have a practical impact for probabilistic adaptations of other computer vision tasks

as well (deblurring, dehazing, matching and stitching, color constancy, image-based modeling, object

recognition, etc.). One direction worth exploring is the use of spatial structure in the input sRGB im-

age(s), such as edges and textures, to further constrain the de-rendered scene colors. This is in the spirit

of [76], and it begs the question of how well a full-gamut linear scene color image can be recovered

from a single tone-mapped sRGB one.
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3
From Shading to Local Shape

3.1 Introduction

Recovering shape from diffuse shading is point-wise ambiguous because each surface normal can lie

anywhere on a cone of directions. Surface normals are uniquely determined only where they align

with the light directionwhich, at best, occurs at only a handful of singular points. A common strategy

for reducing the ambiguity is to pursue global reconstructions of large, pre-segmented regions, with

the hope that many point-wise ambiguities will collaboratively resolve, or that shape information will

successfully propagate from identifiable singular points and occluding contours.

Global strategies are difficult to apply in natural scenes because diffuse shading is typically inter-

mixed with other phenomena such as texture, gloss, shadows, translucency, and mesostructure. Oc-
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Figure 3.1: We infer from a Lambertian image patch a concise representation for the distribution of quadratic surfaces

that are likely to have produced it. These distributions naturally encode different amounts of shape information based

on what is locally available in the patch, and can be unimodal (row 2 & 4), multi-modal (row 3), or near-uniform (row 1).

This inference is done across multiple scales.

cluding contours and singular points are hard to detect in these scenes; and shading-based shape prop-

agation breaks down unless occlusions, gloss, texture, etc. are somehow analyzed and removed by ad-

ditional visual reasoning. Moreover, most global strategies do not provide spatial uncertainty infor-

mation to accompany their output reconstructions, and this limits their use in providing feedback to

improve top-down scene analysis, or in co-computing with other necessary bottom-up processes that

perform complimentary analysis of other phenomena.

This chapter presents theory and algorithms for leveraging diffuse shading more broadly and ro-

bustly by developing a richer description of what it says locally about shape. We show that point-wise

ambiguity can be systematically reduced by jointly analyzing intensities in small image patches, and

that some of these patches are inherently more informative than others. Accordingly, we develop an

algorithm that produces for any image patch a concise distribution of surface patches that are likely to

have created it. We propose these dense, local shape distributions as a new mid-level scene represen-

tation that provides useful local shape information without over-committing to any particular image

explanation. Finally, we show how these local shape distributions can be combined to recover global

object-scale shape.
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The main contributions of this chapter are:

1. Local uniqueness. We provide uniqueness results for jointly recovering shape and lighting from

a small image patch. By considering a world in which the shape of each small surface patch is

exactly the graph of a quadratic function in the view-dependent coordinate system, we prove

two generic facts: i) when the light direction is known, quadratic shape is uniquely determined;

and ii) when the light is unknown, it is determined up to a four-way choice. More interestingly,

if the quadratic patch is parametrized intrinsically from the local frame, we show that there are

up to four-fold shape ambiguities for any given lighting direction. We also catalog the degen-

erate cases, which correspond to special shapes, or conspiracies between the light and shape.

These results are of direct interest to those studying the mathematics of shape from shading.

2. Local shape distributions. We introduce a computational process that takes an image patch

at any scale and produces a compact distribution of quadratic shapes that are likely to have

produced it. At the core of this process is our observation that all likely shapes corresponding to

a (noisy) image patch lie close to a one-dimensionalmanifold embedded in the five-dimensional

space ofquadratic shapes. This part of the chapter is of broad interest because these local,multi-

scale shape distributionsmaybeuseful as intermediate scene descriptors for various visual tasks.

These two parts are tightly bound together. The uniqueness results in Section 3.3 show that the

quadratic model is a particularly convenient representation for small surface patches. In the absence

of noise, both shape and lighting are locally revealed, local shape is generally unique when lighting

is known, and the degenerate cases are easy to describe. Building on this, Section 3.4 examines how

uniqueness breaks down in the presence of noise. While very different quadratic shapes can produce

equally-likely local intensity patterns, we find that all highly-likely shapes lie close to a one-dimensional

sub-manifold. Then, Section 3.5.1 shows how to infer a dense set of sample shapes along this sub-

manifold, thereby taking an image patch and producing a one-dimensional shape distribution. The
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local model and distribution can potentially be used for many applications. As an example, this chap-

ter also briefly describes one application of these results to the problem of object-scale reconstruction

in Section 3.5.2.

3.2 Related Work

Background on shape inference from diffuse shading can be found in several reviews and surveys [15,

33, 94]. An important question is whether shape is uniquely determined by a noiseless image, which

has been addressed by a variety of PDE-based formulations. For example, Oliensis considered C2

surfaces and showed that shape canbe uniquely determined for the entire image by singular points and

occluding boundaries together [58], and inmany parts of the image by singular points alone [57]. For

the more general class ofC1 surfaces, Prados and Faugeras [63] employed a smoothness constraint to

prove uniqueness properties in a more general perspective setup [62, 64] given appropriate boundary

conditions. In this chapter, we use a more restrictive local surface model but prove local uniqueness

without any boundary conditions or knowledge of singular points. This generalizes previous studies

of local uniqueness, which have considered locally-spherical [61] and fronto-parallel [82] surfaces.

Global uniqueness analyses have inspired global propagation and energy-basedmethods for global

shape inference (e.g. [15, 36, 95]), some of which rely on identifying occluding boundaries and/or sin-

gular points. While most methods do not typically provide any measurement of uncertainty in their

output, progress toward representing shape ambiguity was made by Ecker and Jepson [16], who use a

polynomial formulation of global shape from shading to numerically generate distinct global surfaces

that are equally close to an input image. In this chapter, we study uniqueness and uncertainty at the

local level, and infer distributions over candidate local shapes.

Ourwork is related to patch-based approaches that use synthetically-generated reference databases.

The idea there is to reconstruct depth (or other scene properties [20]) by synthesizing a database of

aligned image and depth-map pairs, and then finding and stitching together depth patches from this
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database tomatch the input image and be spatially consistent. Hassner and Basri [28] obtain plausible

results this way when the input image and the database are of similar object categories, and Huang et

al. [34] pursue a similar goal for textureless objects using a database of rendered Lambertian spheres.

Cole et al. [11] focus on patches located at detected keypoints near an object’s occlusion boundaries,

combining shading and contour cues. We also describe global shape as a mosaic of per-patch depth

primitives, but instead of relying on primitives from a pre-chosen set of 3D models, we consider a

continuous five-parameter family of depth primitives corresponding to graphs of quadratic functions

at multiple scales.

One of the our main motivations is the long-term goal of enabling better co-computation with

other bottom-up and top-down visual processes, and by providing useful local shape information

without choosing any single image interpretation, our distributions are consistent withMarr’s princi-

ple of least commitment [53]. We focus on diffuse shading on textureless surfaces, leaving for future

work the task of merging with bottom-up processes for other cues like occluding contours (e.g., [11,

35]), texture, gloss, and so on. Our belief that this will be useful is bolstered by promising results

achieved by recent global approaches to such combined reasoning [2].

In independent work, Kunsberg and Zucker [42, 43] have recently derived local uniqueness results

that are related to, and consistent with, our results in Section 3.3. Their elegant analysis, which uses

differential geometry and applies to continuous images, is complimentary to the discrete and algebraic

approach employed in this chapter. Kunsberg and Zucker also observe that the analysis of shading in

patches instead of at isolated points is consistent with early processing in the visual cortex, and they

discuss the possibility of local shading distributions being computed there. Indeed, the notion of

such distributions is compatible with evidence that humans perceive shape in some diffuse regions

more accurately than others [82].
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3.3 Uniqueness Theory in Quadratic-Patch Shape from Shading

We begin by analyzing the ability to uniquely determine the shape and lighting of a local patch from

a Lambertian shading image in the absence of noise. The key assumption in our analysis is that depth

of the patch can be exactly expressed as the graph of a quadratic function. While subsequent sections

consider deviations from this idealized setting, the following analysis characterizes the inherent ambi-

guity under a local quadratic patch model.

We consider twodifferent local coordinate systems formodeling a small surfacepatch as the graphof

a quadratic function: a view-dependent coordinate systemwhere the z axis of the patch is the same as

the viewingdirection; and a view-independent coordinate systemwhere thez axis is the same asnormal

vector direction of the local patch. Note that these are two essentially different localmodels rather than

a simple changeofparametrization—apatch that canbe expressed as the graphof aquadratic function

in one coordinate system is not necessarily (in fact, almost never is) the graph of a quadratic function

in the other coordinate system. The former local model is more convenient formerging different local

patches into a whole surface. We discuss its uniqueness properties in Section 3.3.1 and use it later in

the rest of this chapter for instability analysis and surface reconstruction. The latter local model is

more natural and intrinsic to the local geometry, but also more mathematically complex. We resort

an approximate imaging model that ignores the small surface foreshortening to simplify the analysis,

whichwill be discussed in detail in Section 3.3.2. The results show strong connection to the differential

geometry analysis given by Kunsberg and Zucker [42, 43].
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3.3.1 Local Quadratic Model in View-Dependent Coordinate System

We model the depth z(x, y) of a local surface patch as a quadratic function defined by coefficient

vector a ∈ R5 up to a constant offset:1

z(x, y; a) = a1x
2 + a2y

2 + a3xy + a4x+ a5y. (3.1)

In matrix form, this is z = [x, y]H[x, y]T + J [x, y]T with

H =

 a1 a3/2

a3/2 a2

 (3.2)

the Hessian matrix and J = [a4, a5] the Jacobian of the depth function. The un-normalized surface

normal to this patch at each location (x, y) is then given by

n(x, y; a) = [nx(x, y; a), ny(x, y; a), 1]
T , (3.3)

where

nx(x, y; a) ≜ −∂z

∂x
= −2a1x− a3y − a4, (3.4)

ny(x, y; a) ≜ −∂z

∂y
= −2a2y − a3x− a5. (3.5)

1Local shading for the special case a4 = a5 = 0 is described in [82], and amore restrictive, locally-spherical
model z(x, y) =

√
r2 − x2 − y2 is analyzed in [61].
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In matrix form, this is n(x, y; a) = A[x, y, 1]T with

A ≜


−2a1 −a3 −a4

−a3 −2a2 −a5

0 0 1

 (3.6)

the shape matrix corresponding to quadratic shape a.

The intensity I(x, y; a) of this patch, observed from viewing direction v = [0, 0, 1]T under a

directional light source l = [lx, ly, lz]
T , is

I(x, y; a) =
lTn(x, y; a)

∥n(x, y; a)∥
, (3.7)

assuming spatially-uniform Lambertian reflectance and that no part of the patch is in shadow, i.e.,

lTn(x, y) > 0, ∀(x, y). Here, the magnitude ||l|| of the light vector represents the product of the

surface albedo and the light strength, and it is not assumed to be equal to one. Re-arranging, the

intensity I at each point (x, y) induces a quadratic constraint on its surface normal [16]:

I2nTn = nT llTn ⇒ nT
(
llT − I2I3×3

)
n = 0, (3.8)

where I3×3 is the identity matrix. This further induces a related constraint on shape parameters a:

[
aT 1

] (
DT

(
llT − I2I3×3

)
D
)  a

1

 = 0, (3.9)

where we use the matrix D ∈ R3×6 to re-write the relationship between n and a in (3.3)-(3.5) as

n = D[aT 1]T .

Every pixel (x, y) in an image patch gives one such constraint on shape parameters a, and shape
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from shading for quadratic patches rests on solving this system of polynomial equations. Our imme-

diate goal is to determine whether the shape a and lighting l can be uniquely determined from these

local constraints.

Uniqueness of simultaneous shape and light

We assume that the local patch is sufficiently large to contain a minimum number of non-degenerate

pixel locations, where the condition for non-degeneracy is defined as follows:

Definition 3.1. For a patchΩ = {(xi, yi)}Ni=1, we define thematrixVΩ ∈ RN×15 such that each row

vi of VΩ consists of all fourth-order and lower terms of xi and yi:

vi =

[
x4i , x

3
i yi, . . . xpi y

q
i

p,q≥0, p+q≤4

. . . , xi, yi, 1

]
. (3.10)

A patchΩ is considered non-degenerate if the matrix VΩ has rank 15.

Note that rectangular grids of pixels that are 5 × 5 or larger will be non-degenerate under the

definition above.

Theorem 3.2. Given intensities I(x, y) in an image patchΩ collected at a set of non-degenerate locations

not in shadow, if any quadratic-patch/lighting pair (a, l) that satisfies the set of polynomial equations

(3.9) has a surface Hessian with eigenvalues that are not equal in magnitude, then there are no more

than four distinct surfaces that can create the same image. Each of these surfaces is associated with

a unique lighting when the Hessian of any solution is non-singular, and a one-dimensional family of

lighting vectors otherwise.

This theorem states that given measurements of intensity from a quadratic surface patch, there

generically exists four physical explanations, each comprised of a shape a, a light direction l/∥l∥, and

a scalar ∥l∥ encoding the product of albedo and light strength.
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Before proceeding to the proof, we introduce a lemma that relates to equations with ratios of

quadratic terms. We define x̄ ≜ [x y 1]T , so that the normals are given by n(x, y; a) = Ax̄,

and the intensity constraint (3.9) becomes

I2x̄ =

(
lTn

∥n∥

)2

=
x̄TAT llTAx̄

x̄TATAx̄
. (3.11)

Using this notation, we can state the following lemma, which is proven in Appendix A.1:

Lemma 3.3. Let A and Ã correspond to two matrices of the form in (3.6), and l and l̃ to two lighting

vectors. If
x̄TAT llTAx̄

x̄TATAx̄
=

x̄T ÃT l̃l̃T Ãx̄

x̄T ÃT Ãx̄
, ∀x̄ ∈ Ω, (3.12)

and if Rank(VΩ) = 15, Rank(A) ≥ 2, and lTAx̄ > 0, ∀x̄ ∈ Ω (i.e., no point is in shadow), then

AT llTA = ÃT l̃l̃T Ã, ATA = ÃT Ã. (3.13)

Moreover, if Rank(A) = 2, then Rank(Ã) = 2 and both A and Ã share a common null space.

Proof of Theorem 3.2: Suppose there exists a solution (a, l) that produces the observed set of inten-

sities in the patchΩ, and the Hessian matrix of surface a has eigenvalues of un-equal magnitude. We

will prove that if there exists another solution (ã, l̃), such that

x̄TAT llTAx̄

x̄TATAx̄
= I2x̄ =

x̄T ÃT l̃ l̃T Ãx̄

x̄T ÃT Ãx̄
, ∀x̄ ∈ Ωi, (3.14)

then ãmust be related to a in one of four specific ways.

Since a is not planar (otherwise the Hessian would have both eigenvalues equal to zero), the corre-
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sponding matrixA is at least rank 2, and we can apply Lemma 3.3:

ÃT l̃ l̃T Ã = AT llTA, ÃT Ã = ATA. (3.15)

We define a new matrixB satisfying Ã = BA. Specifically, whenA is full rank, setB = ÃA−1;

andwhenRank(A) = 2, setB = (Ã+vvT )(A+vvT )−1 with v a vector in the commonnull-space

ofA and Ã, i.e.,Av = Ãv = 0. We will show that there are only four possibilities for matrixB.

Note that A and Ã are affine matrices (last rows are both [0, 0, 1]). Moreover, in the rank 2 case,

the last entry of v will be 0 and A + vvT will also be an affine matrix. Therefore, A−1 (if A is full

rank) and (A+ vvT )−1 (ifA is rank 2) are affine. Hence,B is also an affine matrix:

B =


b11 b12 b13

b21 b22 b23

0 0 1

 . (3.16)

From (3.15), we haveBTB = I3×3, i.e.,

b213 + b223 + 1 = 1 =⇒ b13 = b23 = 0. (3.17)

The orthogonality ofB further restricts its top-left block to be either a 2D rotation matrix

B =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 , (3.18)
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or an “anti-rotation” matrix

B =


cosφ sinφ 0

sinφ − cosφ 0

0 0 1

 , (3.19)

for φ ∈ [−π, π).

From Ã = BA and the fact that the (1, 2)-entry and (2, 1)-entry of Ãmatrix should be the same

(since a12 = a21 = −a3,ã12 = ã21 = −ã3), we have

2a1b21 + a3b22 = a3b11 + 2a2b12. (3.20)

This implies that whenB is of the form in (3.18)

(a1 + a2) sinφ = 0, (3.21)

and whenB is of the form in (3.19)

(a1 − a2) sinφ = a3 cosφ. (3.22)

Since theHessian of a defined in (3.2) has eigenvalues of un-equalmagnitude, a1+a2 ̸= 0, and either
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a1 ̸= a2, or a3 ̸= 0. This leaves only four possible solutions forB:


1 0 0

0 1 0

0 0 1

 ,


cosφ0 sinφ0 0

sinφ0 − cosφ0 0

0 0 1

 ,


−1 0 0

0 −1 0

0 0 1

 ,


− cosφ0 − sinφ0 0

− sinφ0 cosφ0 0

0 0 1

 , (3.23)

where φ0 = arctan a3
a1−a2

. Thus Ã = BA can relate toA in only four possible ways.

Next, we consider the lighting l̃ associated with each shape Ã. Equation (3.15) implies ÃT l̃ = AT l

or ÃT l̃ = −AT l but the latter has shadows, so

AT l = ÃT l̃ = ATBT l̃. (3.24)

WhenA is full rank, (3.24) implies a unique l̃ given by

l̃ = (BT )−1l = Bl. (3.25)

If Rank(A) = 2, we define l⊥ as the component of l in the null space ofAT . Then from (3.24),

BT l̃ = l + cl⊥ ⇒ l̃ = B(l + cl⊥), (3.26)

where c is a scalar. In this case there is a 1D family of l̃ for each of the four shapes Ã.

Figure 3.2 provides an example of the four choices of shape/light pairs in the generic, non-cylindrical
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casewhenboth eigenvalues of the surfaceHessian arenon-zero. Without loss of generality,we consider

a rotated co-ordinate system where a3 = 0, i.e., the x and y axes are aligned with the eigenvectors of

the surface Hessian. Then, the four solutions from (3.23) are:

(
[a1, a2, 0, a4, a5], [lx, ly, lz]

)
, (3.27)(

[−a1,−a2, 0,−a4,−a5], [−lx,−ly, lz]
)
, (3.28)(

[a1,−a2, 0, a4,−a5], [lx,−ly, lz]
)
, (3.29)(

[−a1, a2, 0,−a4, a5], [−lx, ly, lz]
)
. (3.30)

The first choice is the surface/lighting pair (a, l) that actually induced the image. The second corre-

sponds to the well-known convex-concave ambiguity [61], and is obtained by reflecting both the light

and the normals across the view direction. The last two choices (3.29)-(3.30) correspond to performing

the reflection separately along each of the eigenvector directions of the Hessian matrix. These form a

second concave-convex pair.

When one of the Hessian eigenvalues is zero (say a2 = 0 in our rotated co-ordinate system), the

patch surface is a cylinder and it is possible to construct a 1D family of lights for each of the four

surfaces:

l̃ = diag{sign(ã1a1), sign(ã5a5), 1} (l + c · [0, 1, a5]T ) (3.31)

for any c ∈ R such that no pixel is in shadow. Figure 3.3 shows an example of four cylindrical surfaces

and associated families of lights that can produce the same image.

Theorem 3.2 applies when the Hessian eigenvalues of any solution shape are not equal in magni-

tude. What happens when shape solutions have Hessian eigenvalues that are of equal magnitude?

There are two distinct cases. The first is when the Hessian is zero and the true surface is planar. In

this case every surface normal in the patch is identical, and the well-known point-wise cone ambiguity
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Figure3.2: Fourquadratic-patch/lighting configurations that produce the same image (left isa = [1, 1/2, 0, 0, 0], l =
[2/3, 1/3, 2/3]). The lighting is shown as blue arrows. The left pair and right pair are each convex-concave.

Figure 3.3: Lighting solutions in the cylinder case, when one of the eigenvalues of the surface Hessian is zero. There is a

1D family of lighting (any lighting direction in the blue plane with appropriate strength) for each of the four shapes that

can produce the same image.

applies to the patch as a whole: The observed image can be explained by a one-parameter family of

planar surfaces for every light l.

In the second case, the true surface is not planar but the magnitudes of the two eigenvalues of the

Hessian matrix are equal. Unlike the planar ambiguity, there is not an infinite number of surfaces

that can combine with every lighting. But as depicted in Figure 3.4, there is still an infinite number of

allowable patch/lighting pairs. We note that all quadratic surfaces in this category can be expressed as

either one of two following forms

a =[r cos θ,−r cos θ, 2r sin θ, p cos θ − q sin θ, p sin θ + q cos θ], (3.32)

a =[λr, λr, 0, λp,−λq], (3.33)

where θ ∈ (−π, π], λ ∈ {−1,+1}, r ∈ R+, and p, q ∈ R. Given fixed values of r, p and q, these
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Figure 3.4: WhenHessian eigenvalues are equal inmagnitude, there is a continuous family of patch/lighting pairs (given

by (3.32) and (3.33)) that produce the same image. Note that the first four pairs above are analogous to Figure 3.2.

surfaces generate identical images when paired with lighting

l = [lx cos θ − ly sin θ, lx sin θ + ly cos θ, lz], (3.34)

for surfaces (3.32), or with

l = [λlx,−λly, lz], (3.35)

for surfaces (3.33), with fixed values of lx, ly, lz .

Unique shape when light is known

Theorem 3.4. Given intensities I(x, y) at a non-degenerate set of locations Ω, a known light l, and a

quadratic patch a that satisfies the set of equations in (3.9), if the planar component [lx, ly] of the light

is non-zero (i.e, l is not equal to the viewing direction) and not an eigenvector of the Hessian of a, then

the solution a is unique.

Proof ofTheorem 3.4:Without loss of generality, we choose a co-ordinate systemwherea3 = 0. Note

that for any such choice lx and ly will both be non-zero, unless [lx, ly] is zero or an eigenvector of the

surface Hessian, which is ruled out by the statement of the theorem.

If the Hessian of a has eigenvalues with unequal magnitudes, then it is easy to see that each of the

four possible solutions from Theorem 3.2 has distinct light from (3.25) and (3.26), and therefore for a

fixed light, the shape is unique. A Hessian with equal eigenvalues is ruled out since then every light-
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Figure 3.5: Left: Twoquadratic surfaces that produce the same imagewhen the light is alignedwith oneof their common

Hessian eigenvectors. For other view and light configurations (e.g., right) their images are distinct.

direction would be an eigenvector. When the eigenvalues have equal magnitudes but opposite signs,

amust be of the form in (3.32) with θ = 0 or π (since a3 = 0) and r = |a1| = |a2|. In this case too,

we see that each member of the continuous family of solutions—with θ ∈ (−π, π] for surface (3.32)

and light (3.34), or λ ∈ {−1,+1} for surface (3.33) and light (3.35)—has a distinct light-direction.

When the conditions in Theorem 3.4 are not satisfied, there are shape ambiguities as follows. First,

planar patches have Hessians with zero eigenvalues so that every l is an eigenvector; this leads to an

infinite set of planar shape explanations for any given light. Second, when the light and viewdirections

are the same, there are generically four shape solutions analogous to Figure 3.2 or, in the case of equal

eigenvalue magnitudes, a continuous family of solutions analogous to Figure 3.4. Finally, when the

true surface is not planar but the azimuthal component of the light [lx, ly] happens to be alignedwith

one of theHessian eigenvectors, it is possible to construct a second solution by performing a reflection

of the normals across that eigenvector direction. Figure 3.5 demonstrates this with photographs of two

3D-printed surfaces that are distinct but related by a horizontal reflection of their normals.

3.3.2 Local Quadratic Model in Intrinsic Coordinate System

In this section we adopt a more intrinsic coordinate system for local patch model. Define the z axis to

be the normal vector direction of the patch, making it independent to the external viewing direction.

The definition of x and y axes is still dependent on the lighting direction, but that dependency is

for representational convenience only— one can arbitrarily rotate these local horizontal axes without
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changing the conclusion of analysis in this section.

More specifically, given a lighting source l, for any generic2 second order smooth patchwith normal

vector n0 ̸= l, define a local frame F = [fs, ft,n0] such that l lies on the plane spanned by fs and

n0. We use (s, t, r) index a point in this local frame, i.e.

x = sfs + tft + rn0 = [fs, ft,n0]


s

t

r

 = F


s

t

r

 . (3.36)

We call a surface patch quadratic in the intrinsic frame (or intrinsic quadratic in short) if the patch

P can be parametrized by two parameters s and t such that

P (s, t) = sfs + tft +
(
a1s

2 + a2t
2 + a3st

)
n0 = F


s

t

a1s
2 + a2t

2 + a3st

 . (3.37)

An intrinsic quadratic patch has five parameters, two (θ, ϕ) parametrize the normal direction n0

(and thereby the local frame F ), and the other three (a1, a2, a3) parametrize the curvature of the

patch. When we have knowledge of lighting l and an exact measurement of the center pixel intensity,

onenormalparameterϕ is locked, and there are four remainingparameters, denoted asP (s, t; θ, a1, a2, a3),

orP (θ, a1, a2, a3) in short when there is no confusion.

2There are several generic assumptionsmade in this section. Whenwe say “generic”, it indicates such condi-
tion will apply to all surfaces or lights except for a measure-zero subset. We will be explicitly state these assump-
tions throughout the section when they are used.
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Orthographic projection

Figure 3.6: A visualization of the approximate imaging model in Definition 3.5. The model takes the intensity values

on the curved blue grid and ``glue'' them onto the planar green grid. When orthographically projected onto the image

plane, we get the linearized affine grid (green) instead of the non-linear curved grid (blue), which significantly simplifies

the calculation.

The (un-normalized) normal vectors for a intrinsic quadratic patch can be written as

n(s, t) =

[
fs ft n0

]
ns

nt

1

 = F


−2a1s− a3t

−a3s− 2a2t

1

 . (3.38)

When lit with directional lighting l, a Lambertian intensity value can be calculated at each point on

P (s, t) as

I(s, t) =
nsls + ln√
n2
s + n2

t + 1
, (3.39)

where ls = l · fs and ln = l · n0 (note that by definition, l · ft = 0).

This intrinsic coordinate system, however, ismathematically complex, because the intensity I(s, t)

is nonlinearly attached to a surface pointF [s, t, a1s
2+a2t

2+a3st]
T , and there is no directmapping

to the actually observed pixel on the image plane I(x, y). To simplify it, we resort to an approximate

imaging model defined below, which “hallucinates” a linear mapping from the local frame (s, t) to

the image plane (x, y).

Definition 3.5. When the surface P(s, t) is lit with directional lighting l, we project the Lamber-

tian intensity value I(s, t) defined in (3.39) from the surface point F [s, t, a1s
2 + a2t

2 + a3st]
T

to the tangent surface of patch F [s, t, 0]T , resulting in a linear relationship to a pixel in image plane
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I(x, y) = I(P−1(s, t)), where the 2 × 2matrix P is the upper-left block of F . We refer to this as

the approximate imaging model for intrinsic quadratic patches.

With this imaging model, we present our main uniqueness results for local quadratic model on

intrinsic coordinate system below. The detailed proof is given in Appendix A.2, but we make an im-

portant remark on the connection of this theorem to the results of previous section here.

Theorem 3.6. Given intensities I(x, y) in an image patchΩ, generated by approximate imaging model

in Definition 3.5 from a patch/lighting pair (P(θ, a1, a2, a3), l), then generically for any given lighting

l̃, there are at most four intrinsic quadratic patchesP(θ̃, ã1, ã2, ã3) that can exactly explain the image.

Remark 3.7. Theorem 3.6 is qualitatively different from Theorem 3.2 in Section 3.3.1. Theorem 3.2

states that given a shading patch generated by an extrinsic quadratic surface, there are up to four-fold

ambiguity without knowledge of lighting direction, whereas Theorem 3.6 states that the four-fold

ambiguity is based on a given lighting, and implies a 2D continuous ambiguity without knowledge

of lighting. This qualtitative difference in results can be attributed two major modeling difference

summarized below:

1. The surface geometricmodels are different. As noted at the beginning of Section 3.3, the change

of coordinate system in local models is not a trivial re-parametrization: the spaces of quadratic

patches in the extrinsic and intrinsic coordinate systems are essentially different. Patches that

is quadratic in the extrinsic coordinate system rarely live in the quadratic patch space of the

intrinsic coordinate system. The local shading images created by patches from either space can

therefore differ significantly.

2. The imaging models are also different. The imaging model for Section 3.3.1 is standard Lam-

bertian without any additional assumption or approximation; whereas the imaging model in

this section introduces an approximation in Definition 3.5 (see also Figure 3.6). This approxi-
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mation ignores the second-order foreshortening effect on the patch curvature, which could be

a weak but essential signal that leads to stronger uniqueness results if not ignored.

3.3.3 Connection to Uniqueness Results in Related Work

Uniqueness analysis on surface shape from local shadingdates back to the classicworkofPentland [61],

where a more restrictive local model that local patches have equal principal curvatures is assumed. In

the view-dependent coordinate system, the depth map of this restrictive model can be written as part

of sphere of radius r: z(x, y) =
√

r2 − x2 − y2. We quote the main results proved by Pentland in

[61] as follows: “if the principal curvatures [of the local surface] are assumed to be equal, there is a

unique combination of image formation parameters (up to a mirror reversal) that will produce a par-

ticular set of image intensity and first and second derivatives”. Here the “image formation parameters”

refers to the shape parameter r and the lighting parameters l. Although the local model and proved

uniqueness properties are different from ours (2-fold ambiguity rather than 4-fold), we actually share

the same essence: both results imply that given the local intensities and restricting the local surface into

a strict parametric family, the shape and lighting will be strongly constrained, or uniquely constrained

up to a finite (2 or 4) fold of ambiguity.

The four fold ambiguity shown in Theorem 3.2 is in fact a generalization of the classic convex-

concave ambiguity in [61]. This has been previously documented in thework byWagemans et al. [82],

who constructs and illustrates the frontal-parallel version of such phenomenon for perception study

(see Figure 3 of [82]). This can be thought as a special case of our results, where the surface patch has

zero first order derivative and can be written as z(x, y) = a1x
2 + a2y

2 + a3xy, equivalent to set

a4 = a5 = 0 in (3.1).

In more recent independent work, Kunsberg and Zucker [42, 43] derived local uniqueness results

from differential geometry analysis that are related to and consistent with ours under the intrinsic

local coordinate system. The derivation is from a continuous perspective, and we summarize their
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main results (Theorem 4.1 in [42]) as following: for any point in the image plane p, the second order

derivative of image intensity Iuu, Iuv, Ivv (u, v are the unit length vectors on the image plane, with u

aligned to the direction of brightness gradient and v in the direction of isophote and therefore perpen-

dicular to brightness gradient) cast three constraints on the normal vector and curvature of the surface

geometry, and these constraints are invariant to the lighting direction. They further argue that for a

quadratic patch with 5 degrees of freedom, these 3 constraints will leave a 2D continuous ambiguity.

On the other hand, assuming prior knowledge of the normal direction, we will be left with only 3

curvature unknowns, and the constraints on these 3 curvature unknowns become a 4-th order poly-

nomial, which can be solved up to a four-fold ambiguity (see Section 5.3 and Section 5.4 of [42] for

more details). These results share strong connection to Theorem 3.6 of previous section. We list the

similarities and differences of two approaches below:

The local patch models are essentially the same. In Theorem 3.6, we use an intrinsic local coordi-

nate system of the patch, and explicitly state that the patch can be expressed as the graph of quadratic

function t = a1r
2 + a2s

2 + a3rs, whereas Kunsberg and Zucker uses a differential geometry setup

and looks into themajor andminor curvature of the patch, which is exactly the eigenvalues ofHessian

matrixH = [a1, a3/2; a3/2, a2] in our setup.

The imagingmodel and input intensity representation of the algorithms are different. Ourmethod

assumes an approximate imagingmodel that ignores curvature foreshortening (seeDefinition 3.5) and

uses the intensities at a set of discrete pixels (say a 5× 5 grid) as input; whereas Kunsberg and Zucker

employ a continuous setup and use the second order intensity derivatives as input, and they do not

ignore any foreshortening effect in the analysis. These two sets of input are different because the curva-

ture foreshortening approximation in our imagingmodel (ignoringquadratic terma1s
2+a2t

2+a3st

in Equation (3.37)) will change the second order intensity derivatives at center pixel. It can be shown

that for a given lighting, the four quadratic surface solutions predicted by our theory that create the

same intensities on the discrete grid when ignoring curvature foreshortening will not have the same

49



second order intensity derivatives if the curvature foreshortening is not ignored. It remains an in-

teresting future work direction to explore whether our uniqueness theory will still hold for intrinsic

quadratic patches without any foreshortening approximation in the imaging model.

The prior knowledge assumed by the two approaches are different and complementary to each

other. Our approach considers known lighting direction and shows uniqueness of the entire surface

parameters (first and second order), whereas Kunsberg and Zucker assumes the surface normal a pri-

ori, and reasons about the uniqueness of second order surface parameters that are invariant to lighting

directions. As a speculation, we believe that given additional intensity and first order derivatives in-

formation to the latter framework, the lighting direction can also be locked down up to a four-fold

ambiguity. If that is indeed the case, the results we get are “dual” to Kunsberg and Zucker, in the sense

that the dot product of normal and lighting produces the intensity of center pixel, givenwhich knowl-

edge of one vector will confine the other vector to a one-dimensional cone. The uniqueness analysis

further reduce the vector on each cone to a finite number of (up to 4) possibilities given additional

intensity information of the local neighborhood.

3.4 Ambiguity in the Presence of Noise

The uniqueness results from the previous section suggest that among the many possible models one

could use for local shapes—such as splines, linear subspaces, exemplar dictionaries [34], or continuous

functions with smoothness constraints as in [2]—the quadratic function model may be particularly

useful. However, before we can use this model for inference, we must understand the effects of devi-

ations, such as intensity noise and higher-order (non-quadratic) components of local shape. To this

end, we provide some intuition about the types of quadratic shapes that almost satisfy the polynomial

system (3.9) and thus become likely explanations in the presence of noise. These intuitions motivate

a statistical inference technique that will be introduced in Section 3.5.

In the rest of this chapter, we assume that the light direction l/∥l∥ and the albedo/light-strength
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Figure 3.7: The light-centered cone of possible surface normals at any image point projects radially to a conic on the

projective plane. We parameterize these conics by the radial projection of spherical angle θ.

product ∥l∥ are known. Then, the polynomial system (3.9) relating the quadratic parameters a to the

observed intensities I can be understood as combining two types of constraints on the patch normals

n = [nx, ny, 1]. First, each pixel’s normal is constrained by its intensity to a light-centered circle of

directions as per (3.7). This is shown in the left of Figure 3.7, where the circle of directions is parame-

terized by “azimuthal” angle

θ = arctan

(
nxly − nylx

l2x + l2y − lz (nxlx + nyly)

)
. (3.40)

The second type of constraint comes from the quadratic shape model, which induces a joint ge-

ometric constraint on the set of surface normals that belong to the patch. This joint constraint has

an intuitive interpretation when we represent the normals, light, and view as points on the plane de-

fined by nz = 1 (the so-called projective plane [79]). This representation is constructed by radially-

projecting the hemisphere of directions onto the plane as shown in Figure 3.7. The view is the origin of

the plane, the light projects to another planar point (lx, ly)/lz , and each pixel’s θ-parameterized circle

of normal azimuthal directions projects to a conic section, still parameterized by θ. The set of normals

that lie on different conics but have the same azimuthal angle θ form a ray (right of Figure 3.7), and an

inversion in the sign of θ corresponds to a reflection of the surface normal across light point.

Using this representation, Figure 3.8 visualizes the two types of constraints (under a light with

ly = 0) for 25 normals at a 5 × 5 grid of (x, y) pixel locations. In addition to each pixel’s normal
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Figure 3.8: Exact and approximate solutions for quadratic shape. Each color corresponds to a pixel in the patch (four are

shown in the plot), whose intensity defines a conic curve that the normal vector should lie on. The normal vectors for a

quadratic patch should form an affine grid on the projective plane, and good-fit shapes have grids that are well-aligned

with the corresponding conics. The top left grid corresponds to an exact fit.

being constrained to its conic, the set of normals is collectively constrained, via (3.6), to be a sym-

metric affine grid. Therefore, solving the polynomial system for quadratic coefficients a amounts to

finding a symmetric affine grid that aligns properly with the per-pixel conics. Theorem 3.4 tells us

there is only one grid that aligns perfectly, but as shown in the figure, there will be other grids that

come close. When there is noise, the shapes corresponding to all of these grids become likely explana-

tions, even though they are physically quite different from one another. To avoid over-committing,

local inference systems must output distributions of shapes that encode this fact.

Then, a natural question is: do we need to search the entire five-dimensional space of quadratic

parameters a to find all the likely approximate solutions? To answer this question, we note that these

approximate solutions are intuitively expected to arise from the degenerate cases detailed in Theo-

rem 3.4. For example, we find that these solutions often occur in pairs corresponding to reflections

across the light direction (i.e., across the x axis in Figure 3.8), which would correspond to a second ex-

act solution if the lightwere a eigenvector of the surfaceHessian. Remember that themost ambiguous

degeneracy is the one induced by the true surface being planar, when all the conics overlap and there

is a continuous set of solutions whose normals can be parametrized by a single angle θ as per (3.40).

Based on this intuition, we define θ(a) as the first-order orientation of the shape a to be the angle
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Figure 3.9: Iso-contours of RMS intensity error for renderings of best-fit shape parameters (a1, a2, a3, a4, a5)when
θ is fixed. Close fits occur at very different orientations (four modes here), but for any fixed orientation θ the remaining

shape parameters are very constrained.

of the center normal, and find empirically that it is sufficient to search along only a one-dimensional

manifold parametrized by this angle.

In Figure 3.8, this search can be understood as fixing the value of θ(a), and warping an affine grid

by optimizing the parameters a1, a2, a3, a4, a5 to fit the conic intensity constraints. We see that this

leaves very little play in theparameters, so the shapesaofpossible solutions are highly constrainedonce

θ(a) is fixed. This effect is further visualized in Figure 3.9, which shows contours of constant RMS

intensity difference—equally spaced in value on a logarithmic scale—between the observed intensities

and the Lambertian renderings of best-fit shapes obtained by fixing θ(a) and one coefficient (say, a1)

and then optimally fitting the others (say, a2, a3, a4, a5). The four “close fits” appear as the four

modes, where the value of θ(a) strongly constrains each coefficient of low-error shapes a.

An interesting observation about Figure 3.8 and Figure 3.9 is that there are four distinct local min-

imum in the one-dimension sub-manifold, and this in fact is not a coincidence. In practice, we found

that for most quadratic patches, there are usually two or four strong modes in the one-dimensional θ

sub-manifold, whichwe believe can be attributed to the four-fold ambiguity of the intrinsic quadratic

patch proved in Theorem 3.6, although the space of patches we are studying is extrinsically quadratic.
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Figure 3.10: Mode prediction with intrinsic quadratic model. The blue curve shows the RMS intensity error for render-

ings of best-fit extrinsic quadraticmodel, and the green dotted lines show themode predictions from intrinsic quadratic

model described in Section 3.3.2. The black vertical line is the ground truth θ that generate the input image.

More specifically, given the intensities generated from an extrinsic quadratic patch a and known

lighting l, according to Theorem3.4, generically, the only extrinsic quadratic patch that can exactly

explain these intensities is a itself. However, in presence of noise, the intrinsic approximation of patch

a (referred to as a′) also comes close to explain the image intensities (note again that the extrinsic and

intrinsic quadratic patches form two different families). Under Theorem3.6, there are up to three

other intrinsic quadratic patches that create the exact same intensities to that of a′ under lighting l,

and therefore these intrinsic patches can also closely explain the input image intensities. Finally, the

extrinsic approximation of these three intrinsic patches will produce very similar image as the input.

To verify this intuition, we did the following experiment: create an intensity patch from a given

surface patch a, and densely sample the one-dimensional θ sub-manifold to find the best extrinsic

quadratic patches that best explain the given intensity. Then convert the ground truth patch a into

the intrinsic coordinate system as a′ (with some loss of accuracy), find the three other intrinsic patches

that generate the same intensities as a′ (refer to Appendix A.2 for how the exact calculation is carried

out), and convert these patches into extrinsic quadratic space. We examine the θ of the converted-
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back patches and see whether they correlate to the best samples in the one-dimensional extrinsic sub-

manifold. The result is shown in Figure 3.10, which affirms our intuition.

3.5 Local Shape Proposals and Surface Reconstruction

Armedwith intuition about the characteristics of approximate solutions for thequadratic-patchmodel,

we now develop a method for inferring shape distributions at any local image patch of any size. The

output for each image patch is a set of quadratic shapes of the same size that correspond to a discrete

sampling along a θ-parametrized one-dimensional manifold, as well as a probability distribution over

this set of quadratic shapes. The previous sections have demonstrated that shading in some image

patches is inherently more informative than others. Our goal is to create a compact description of this

ambiguity in each local region at multiple scales, thereby providing a useful mid-level representation

of “intrinsic” scene information for vision.

3.5.1 Computing Quadratic Shape Proposals

Given the intensities Io(x, y) at a patch (x, y) ∈ Ω, we first generate a set of quadratic proposals

for the shape of that patch, and based on the intuition from the previous section, we index these

proposals angularly in reference to the light l. Consider a discrete set of uniformly-spaced values

θj , j ∈ {1, . . . J} over (−π, π]3, and for each angle θj we find the corresponding quadratic shape

aj that best explains the observed intensities Io(x, y) in terms of minimum sum of squared errors:

aj = argmin
a:θ(a)=θj

∑
(x,y)∈Ω

∥Io(x, y)− I(x, y; a)∥2, (3.41)

where I(x, y; a) is defined as per (3.7).

3For some patches, we consider closer-spaced samples over a shorter interval when values close to±π do not
correspond to physically feasible estimates for shape.
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Let (0, 0) be the center of the patch. Then since θ(ai) is fixed, the quadratic coefficients a4 and a5

ofaj only have one degree of freedom, and can be re-parametrized in terms of a single variable r ∈ R+

that indexes points along the constant θ ray on the projective plane:

a4 = − lx
lz

− r

(
− lx
lz

cos θj + ly sin θ
j

)
, (3.42)

a5 = − ly
lz

− r

(
− ly
lz

cos θj − lx sin θ
j

)
. (3.43)

Therefore, the non-linear least-squaresminimization in (3.41) is over the four variablesa1:3, r, and can

be efficiently carried out with Levenberg-Marquardt [52]. We found empirically that it is insensitive

to initialization, and use [0, 0, 0, r0] in our experiments, where r0 is chosen such that the center pixel

lies on the corresponding conic.

This minimization occurs independently and in parallel for every patch in an image, and it can

therefore be parallelized over an arbitrary number of CPU cores, on a single machine or a cluster of

machines, as required for increasing image sizes. Our reference implementation considers J = 21

quantized angles for each patch, and takes one minute on an eight-core machine for inference on all

overlapping 5× 5 patches in a 128× 128 image.

3.5.2 Surface Reconstruction

In collaboration with Ayan Chakrabarti, we demonstrate the utility of our theory and local distri-

butions for higher-level scene analysis by reconstructing object-scale surface shape when the light l is

known. The local representations provide concise summaries of the shape information available in

each image patch, and they do this without “over-committing” to any one local explanation. This

allows us to achieve reliable performance with very a simple algorithm for global reasoning that infers

object-scale shape through simple iterations between: 1) choosing one likely shape proposal for each

local patch; and 2) fitting a global smooth surface to the set of chosen per-patch proposals.
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Input Image Proposed Polynomial SFS Cross-Scale

Resolution 640× 500 Median Angular Error 14.83◦ Median Angular Error 24.81◦ Median Angular Error 20.02◦

Resolution 590× 690 Median Angular Error 11.80◦ Median Angular Error 20.77◦ Median Angular Error 19.86◦

Resolution 580× 580 Median Angular Error 20.25◦ Median Angular Error 17.50◦ Median Angular Error 21.00◦

Resolution 720× 660 Median Angular Error 12.70◦ Median Angular Error 22.33◦ Median Angular Error 23.26◦

Resolution 550× 760 Median Angular Error 15.29◦ Median Angular Error 15.58◦ Median Angular Error 13.17◦

Resolution 450× 850 Median Angular Error 17.90◦ Median Angular Error 14.50◦ Median Angular Error 11.96◦

Resolution 790× 1070 Median Angular Error 28.13◦ Median Angular Error 29.21◦ Median Angular Error 25.80◦

Figure 3.11: Surface reconstruction on real captured data. We show two novel view points for each reconstruction, and

themedian angular error between estimated surface normal vectors and ground truth surface normal vectors.
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Figure 3.11 shows the surface reconstruction results of the proposed algorithm, in comparison with

two state-of-the-art methods. The first is the iterative algorithm proposed by Ecker and Jepson [16]

(labeled “Polynomial SFS”). The second (labeled “Cross-scale”) is the shape from shading component

of the SIRFSmethod [2], i.e., where we treat the light and shading-image as given, and do not use con-

tour information. More details of the proposed algorithms can be found in our journal paper [86].

3.6 Discussion

Our theoretical analysis shows that in an idealizedquadraticworld, local shape canbe recovereduniquely

in almost every local image patch, without the use of singular points, occluding contours, or any other

external shape information. Beyond this idealized world, our evaluations on synthetic and captured

images suggest that one can infer, efficiently and in parallel, concise multi-scale local shape distribu-

tions that are accurate and useful for global reasoning.

There are many viable directions for interesting future work. Foremost among these is the joint

estimation of shape, lighting, and albedo. The reconstruction algorithms proposed in this chapter

are limited to the case when lighting is known, but the uniqueness results in Section 3.3.1 suggest that

simultaneous reconstruction of shape and lighting may also be possible. Theorem 3.2 tells us that,

in an idealized quadratic world, there are generically four lights l that can explain each local patch,

and that these quadruples of possible lights will vary from patch to patch according to the directions

of each patch’s Hessian eigenvectors. Intuitively, one might infer the true light (along with its reflec-

tion across the view, which is always equally-likely) as the one that is common to all or most of the

per-patch quadruples.4 Practically speaking, it is likely that for a reconstruction algorithm to handle

unknown lighting, it will need to jointly reason about shape, lighting, and varying albedo, in the same

4We have experimented with a direct implementation of this intuition that does a brute-force search only
on lighting direction, assuming a known constant light-strength and albedo, and with pooling local estimates
without considering consistency or noise. This method worked reasonably well in many cases, but was compu-
tationally expensive and not entirely robust.
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spirit as Barron andMalik [2]; and that such reasoning will benefit from an analysis of the joint ambi-

guities that are induced by noise and non-quadratic shape, similar to what was done for shape alone

in Sections 3.4 and 3.5.

Also, while we provide a means to extract a single estimate of the global surface from local shape

distributions, one could also imagine using reasoning about consistency and outliers to allow the full

distributions of neighboring patches to collaboratively refine themselves. This could be useful, for

instance, when the object boundaries in a scene are not known a-priori. These refined local distribu-

tions may then be able to identify depth discontinuities in the scene, and help segment out individual

objects for shape recovery.

Finally, it will be interesting to pursue combining our shading-based local distributions with com-

plementary reasoning about contours, shading keypoints [26], texture, gloss, shadows, and so on—

treating these as additional cues for shape, as well as to better identify outliers to our smooth diffuse

shadingmodel. We also believe it is worth integrating these local shape distributions into processes for

higher-level vision tasks such as pose estimation, object recognition, and multi-view reconstruction,

where one can imagine additionally using top-down processing to aid local inference, for example by

exploiting priors on local quadratic shapes that are based on object identity or scene category.
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4
Consensus of Regions in Spatial Hierarchy

4.1 Introduction

Physics-based visual inference, also known as low-level vision, is the estimation of depth, motion,

shape, and other physical scene properties from visual measurements. Since it is ill-posed, methods

often employ a local model that is expected to apply piecewise across the scene, and that restricts the

variation of scene values within each applicable piece or region. Slanted planes for binocular dispar-

ity, constant or affine optical flows, and families of smooth shapes for surface normals are common

examples (see Figure 4.1). The restriction on scene variability in applicable regions allows image cues

to be aggregated spatially across each region, thereby reducing the ambiguity that exists point-wise.

The fundamental challenge lies in identifying—automatically from the image input—the sizes and
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(a) Binocular stereo with
slanted plane local model

(b) Optical flow with constant flow
or affine flow local model

(c) Shape from shading with
quadratic local model

Figure4.1: Localmodels for several low-level vision tasks: (a)binocular stereowithaslantedplane localmodel, (b)optical

flowwith constant flowor affine flow localmodel and (c) shape from shadingwith quadratic localmodel. Reasoningwith

local models from ``good'' regions (e.g. green) will significantly reduce the pixelwise ambiguity in low-level vision, but

suchmodels are not universally valid for all regions (e.g. red). The key challenge to be addressed in this chapter is how to

simultaneously findwhich regions are valid and estimate the best local model parameters for valid regions.

shapes of the aggregation regions that are right for each part of a scene. Regions that are too small do

not sufficiently reduce the underlying ambiguity, while those that are too big or the wrong shape span

abrupt scene changes that violate the local model and make estimates unreliable.

We introduce a computational framework to address this challenge. Called the consensus frame-

work, we apply it to the binocular stereo problemwhile also presenting it generally as a way to attack a

variety of low-level tasks. The framework explicitly considers a large set of dense, overlapping regions

ofmany sizes that redundantly cover the image plane. It simultaneously determines which regions are

inliers to the local model (binary variables) and, for each inlying region, the correct coordinates in the

local model space for that region (continuous variables). Estimation is cast as optimizing an objective
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that requires each inlying region to be supported by its local image data while also having scene esti-

mates that are consistent with its overlapping neighbor regions. The output of the framework—the

inlier statuses of all regions and the local estimates from the inliers—offers a rich, multi-scale repre-

sentation of the physical scene. This includes spatial grouping information, a global scene map, and a

point-wise measure of confidence, all of which are desirable when seeking to combine multiple low-

level cues or integrate higher-level processes.

Compared to traditional approaches based onMarkov random fields (MRFs), the consensus frame-

work reasons in a much larger variable space, and more critically, with orders of magnitude more

links between variables. This is because it enforces simultaneous consistency between the thousands

of regions that overlap any single pixel. Despite this complexity, two properties make estimation

not only feasible, but efficient. First, since the dense region-set embodies an over-complete scene

representation—withmanymore internal variables than values in the output scene map—good solu-

tions can often be reached by a simple alternating algorithm similar to expectation–maximization (see

Section 4.4). Second, when the regions are organized hierarchically by scale, each region only needs

to sum information from its parents and children and computation complexity can be significantly

reduced (detailed in Section 4.5).

Experiments on the binocular stereo problem show that the consensus framework achieves greater

accuracy on the KITTI benchmark [21] than comparable state-of-the-art variational and MRF ap-

proaches, as is evaluated in Section 4.7.1. The shape from shading reconstruction algorithm described

in the previous chapter (Section 3.5.2) is in fact a preliminary version of the consensus framework pro-

posed in this chapter, and detailed connections and differences will be described in Section 4.7.2.

4.2 Related Work

There aremany techniques for low-level vision problems like binocular stereo, optical flow, and shape-

from-shading. While they vary greatly in theway they derive information point-wise from image cues,
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theirmechanisms for spatial aggregation tend to followone of three different paradigms. The simplest

paradigm is purely local—a single support region is explicitly defined around each pixel [37, 70, 93, 81,

90]. These regions are typically determined using intensity and texture information, either indepen-

dently for each pixel or jointly for all pixels via segmentation, and they succeedwhen color and texture

boundaries are well aligned with boundaries in the latent scene map.

Variational methods form another category. Estimation involves minimizing a per-pixel data cost

along with a spatial regularization term that penalizes large derivatives in the scene map [6, 7, 32, 44,

66, 74]. The derivative filters are designed to measure deviations from some implied local model, and

the penalty is chosen to promote piecewise adherencewhile still being convex. Some variationalmeth-

ods employmulti-scale reasoning, through sequential coarse-to-fine optimization [7] or simultaneous

penalization of derivatives at multiple scales [2].

The third dominant paradigm are MRF-based methods [47, 77, 84, 87, 88, 89]. These methods

explicitly encode piece-wise adherence to the local model (as opposed to the convex penalties in vari-

ational methods, which do so implicitly), by making hard decisions about the local model being valid

across an edge or clique. Since they often consider continuous label spaces and non-submodular

smoothness terms, thesemethods tend to rely on expensive approximate algorithms for optimization.

Computation can be reduced by defining graphs on super-pixels instead of pixels [87, 88, 89], and this

does not substantially reduce accuracy as long as the super-pixel boundaries happen to be well aligned

with scene boundaries.

The consensus framework is different from traditional, single-scale MRF techniques because it is

defined on overlapping regions at multiple scales. It is also different from multi-scale MRF formu-

lations that have been used for segmentation [48], where parent nodes encode semantic context for

co-occurring labels of their children. In consensus, all regions at all scales are self-similar. They all

make direct predictions about pixel-level scene values, and they all use the same local model.

We use an alternating algorithm to minimize our objective. This is similar to “divide and con-
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cur” optimization algorithms like the alternating direction method of multipliers (ADMM) [14] that

modify an objective to create multiple copies of a variable—one for each term in the original objec-

tive that includes that variable—and then enforce consistency between these copies. Our consensus

objective resembles these modified, split objectives. A crucial part of our approach is the hierarchical

organization of regions across scales, which makes the aggregation steps in the alternating minimiza-

tion tractable. It is worth noting the approach of [41] here, which also uses an efficient data-structure

for message aggregation during mean-field inference in a densely connected graph.

4.3 Consensus Framework

We begin with a formal description of the three main components of the proposed framework. First,

there is the global scenemap. This is a functionZ(n) ∈ Rd on the two-dimensional image plane, with

n = (x, y) indexing discrete spatial locations. Z(n)may be scalar-valued (d = 1) for properties such

as stereo disparity, or vector-valued for properties such as motion and 3D surface orientation. Second,

there is a dense set P of overlapping regions p ∈ P within the image plane, each one a collection

of locations n. The final component is the local model Zp(n; θp), where θp is the model parameter.

The local model is expected to apply piecewise across most of the scene, and it restricts accordingly the

allowable choices for scene values within any region p. The proposed framework is very flexible with

itsmathematical form so as to encompass all sorts of localmodels proposed in computer vision [4, 86].

A few examples are shown in Figure 4.1, and a concrete family of generalized linear local models will

be presented in Section 4.5, which is general enough to includemany interesting local models and also

facilitates efficient computation at the same time.

With the three components in hand, estimation requires determining: a) which regions p ∈ P are

inlierswith respect to the localmodel; andb) for all inlying regions, values of theper-region variablesθp

that are supported by the image data and consistent with each other. Inliers are indicated by a binary

variable Ip ∈ {0, 1} associated with each patch. Once determined, the values of {Ip, θp} together
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provide a rich and over-complete representation of the physical scene. At each pointn, local grouping

information is available through the subset Jn of (potentially thousands of) inlying regions covering

that point:

Jn = {p : p ∋ n, Ip = 1}. (4.1)

An estimate Z̄ of the global scene map is induced as the point-wise average, or consensus, of the local

estimates from inlying regions:

Z̄(n) =
1

|Jn|
∑
p∈Jn

Zp(n; θp) =
1∑

p∋n Ip

∑
p∋n

Zp(n; θp) Ip. (4.2)

The count |Jn| represents the degree of consensus at each point, and provides a point-wise measure of

confidence in the estimate Z̄ .

Estimation is then cast as a minimization of the following cost over variables {Ip, θp}:

L({Ip, θp}p∈P) =
∑

p:Ip=0

τp +
∑

p:Ip=1

Dp(θp) + λ
∑
n

|Jn| Var
[
{Zp(n; θp)}p∈Jn

]
. (4.3)

The first term applies a cost τp for declaring region p an outlier, in line with intuition that the local

model is often valid. The second term scores local variables θp in each inlying region using data cost

Dp(·), typically measuring the ability of restricted local scene estimatesZp(n; θp),∀n ∈ p to explain

the relevant image data. Both τp andDp(·) can optionally be augmented to encode prior information

about the scene or context fromsemantic visual processes. The finalλ-weighted termpromotes consis-

tency between overlapping regions by penalizing, at every point, the variance of the scene predictions

from inlying regions that cover it.
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4.4 Alternating Optimization Algorithm

To minimize (4.3), we re-write the consistency term in terms of the global scene map Z , creating a

related costL′:

L′({Ip, θp}p∈P , Z) =
∑

p:Ip=0

τp +
∑

p:Ip=1

(
Dp(θp) + λ

∑
n∈p

∥Zp(n; θp)− Z(n)∥2
)
, (4.4)

where the two costs are equal when Z is set to the consensus as per (4.2), i.e. L′({Ip, θp}, Z̄) =

L({Ip, θp}). We define the consistency cost for patch pwith respect to a given scene mapZ as

Cp(θp, Z) =
∑
n∈p

∥Zp(n; θp)− Z(n)∥2. (4.5)

CostL′ is minimized iteratively, with each iteration having two steps. The first step is a minimiza-

tion over region variables {Ip, θp}withZ fixed. Conveniently, this can be done independently—and

in parallel—for each region since there are no cross-region terms in L′ when Z is fixed. These inde-

pendent minimizations are achieved by setting

θp = argmin
θ

[Dp(θ) + λCp(θ, Z)], (4.6)

and then,

Ip =

 0, if [Dp(θp) + λCp(θp, Z)] > τp,

1, otherwise .
(4.7)

In other words, the best model-based explanation is found for each region p, and then the region is

declared outlier if the error-of-fit exceeds the outlier cost τp.

The second step at each iteration is a minimization over Z with region variables fixed at their

new values. This is achieved simply by setting Z = Z̄ as per (4.2), and it is thus guaranteed that
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L({Ip, θp}) = L′({Ip, θp}, Z) at the end of every iteration. Consequently, beginning with any ini-

tial estimate of the scene map Z , each iteration decreases the value of L′, and therefore of L, which

converges to a (local) minimum whenever {Dp(·)} have finite lower bounds.

Convergence to a good localminimum is promoted by beginning the iterationswith a smaller value

for the consistency weight λ, and then increasing it to its final value across the initial iterations. Inter-

estingly, this induces a temporal coarse-to-fine refinement of the scene map during the optimization.

Early-on, smaller λ values allow more inlying regions, causing the consensus to be smoothed across

larger areas. As λ increases, more regions that span scene discontinuities become outliers, and the

consensus exhibits progressively finer detail.

4.5 Hierarchical Computation

The computational cost of the alternating optimization algorithm depends on the complexities of the

three parts of every iteration:

1. Computing consistency termsCp(θp, Z) for every region p as per (4.5).

2. Updating (θp, Ip) for every region p as per (4.6) and (4.7).

3. Computing Z̄ as per (4.2).

Considering the large number of regions (same order as the number of pixels) and large number

of pixels per region (we use regions of size up to 64 × 64), each of the three steps above can be very

expensive. In this section, we show that by organizing patches in a spatial hierarchy and assuming a

generalized linear local model, the computation complexity of Step 1 and Step 3 can be significantly

reduced. As will be shown in Section 4.6, this hierarchy structure will also benefit Step 2 if the data

costsDp(θp) satisfy certain constraints.

In our hierarchy structure, set of patches P has regions at K different scales, and symbol Pk rep-

resents the subset of regions at scale k ∈ {1 . . .K}. By convention, larger values of k correspond to
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Figure 4.2: Regions are organized hierarchically. Any region p ∈ Pk at scale k > 1 (say the red one) can be written

exactly as the union of a set of non-overlapping child regions from scales smaller thank (the pink ones). This hierarchical

structure facilitates efficient computation for consistency termCp(θp;Z) and scenemap Z̄ .

larger regions. Moreover, the regions can be organized hierarchically: for every region p ∈ Pk at scale

k > 1, it is possible to select a setHp of non-overlapping “child regions” from scales smaller than k,

such that p can bewritten exactly as their disjoint union. Figure 4.2 shows an example of such a region

set for a one-dimensional image plane, where each Pk is the set of overlapping regions of length 2k,

and each p ∈ Pk, k > 1 is the union of two children fromPk−1.

We restrict the local model to a generalized linear form:

Zp(n; θp) = U(n)θp, ∀n ∈ p, (4.8)

where U(n) ∈ Rd×M is some pre-defined matrix-valued function on the image plane, and θp ∈

RM is a variable associated with region p. Algebraically, this restricts local scene values to an M -

dimensional linear subspace, regardless of region size; and as a consequence of using a commonU(n),

local scene estimates from two overlapping regions p and p′ agree whenever θp = θp′ . Here are some
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examples of functionsU(n) and their corresponding physical interpretations:

U(n) =[x y 1], d = 1,M = 3, (4.9)

(disparity of locally-planar surfaces),

U(n) =

 ∂/∂x

∂/∂y

 [x2 y2 xy x y], d = 2,M = 5, (4.10)

(normals of locally-quadratic surfaces),

U(n) =

 x y 1 0

0 x y 1

 , d = 2,M = 6, (4.11)

(flow vectors for locally-affine motion).

Under these generalized linearmodels, the consistency term (4.5) is a quadratic function overmodel

parameters θp:

Cp(θp, Z) =
∑
n∈p

∥U(n)θp − Z(n)∥2 = θTp Qpθp − 2ϕT
p θp + ep, (4.12)

with each Qp =
∑

n∈p U(n)TU(n) a pre-computed M × M matrix permanently associated with

region p; and each ϕp, ep anM -vector and a scalar, respectively, derived fromZ as:

ϕp =
∑
n∈p

U(n)TZ(n), ep =
∑
n∈p

∥Z(n)∥2. (4.13)

Using the fact that every region p is partitioned by its child regions c ∈ Hp, we can write

ϕp =
∑
n∈p

U(n)TZ(n) =
∑
c∈Hp

∑
n∈c

U(n)TZ(n) =
∑
c∈Hp

ϕc, (4.14)
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and similarly, ep =
∑

c∈Hp
ec. This reduces thenumber of additions significantly—fromthenumber

of pixels in region p to just the number of its children. To ensure that values of {ϕc, ec}c∈Hp are

available, calculations of {ϕp, ep} are scheduled in an upward sweep through the hierarchy, using

explicit summation over pixels for regions at scale k = 1, and the cheaper right-most expression of

(4.14) for progressively larger scales.

The hierarchical structure can also be leveraged to efficiently compute the consensus Z̄ from the

current values of the region variables {θp, Ip}. Note that for every region p ∋ n at scale k > 1, there

is one and only one child region in Hp that also includes n. For the simple case with only two scales

(K = 2), we see that the summation of local estimates from inlying regions can be simplified to

∑
{p∋n}∩P1

U(n)θpIp +
∑

{p∋n}∩P2

U(n)θpIp =
∑

{p∋n}∩P1

U(n)

θpIp +
∑

r∈H−1
p

θrIr

 , (4.15)

where H−1
p = {r : Hr ∋ p} denotes the set of parents for any region p.1 In the more general case

withK scales, we recursively define augmented variables {θ+p , I+p } for every region p as

θ+p = θp Ip +
∑

r∈H−1
p

θ+r , I+p = Ip +
∑

r∈H−1
p

I+r , (4.16)

which can be computed by a downward sweep through the pyramid. Then, it is easy to see that the

numerator and denominator of the expression for Z̄(n) in (4.2) are given by

(∑
p∋n

U(n)θp Ip

)
= U(n)

∑
{p∋n}∩P1

θ+p , (4.17)

(∑
p∋n

Ip

)
=

∑
{p∋n}∩P1

I+p . (4.18)

1Note that for a region p ∈ PK at the largest scale,H−1
p = ∅.
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Thus, instead of computing summations over all overlapping regions at all scales for each location n,

the consensus can be computed using summations over the augmented variables {θ+p , I+p } of regions

at just the smallest scale.

The gains fromusing these recursive computations is substantial, and canbe interpreted as reducing

the effective connectivity of the framework to just the sparse set of hierarchical links. For the network

in Figure 4.2, it represents a reduction, in the number of required summations for (4.2) and (4.5),

from O(2KN) to O(KN). Moreover, while the recursion requires different scales to be processed

sequentially, note that the computations in (4.14) and (4.16) can still be carried out for all regions

p ∈ Pk at each scale k in parallel. Therefore, as visualized in right most plot of Figure 4.2, computa-

tion happens in a distributed architecture, requires the identical operations of (4.6), (4.7), (4.14), and

(4.16) at each region, with operations at each scale happening in parallel and information being passed

through hierarchical links between scales—all of which arises naturally as an efficient way to optimize

a well-defined mathematical objective.

4.6 Data Costs in Binocular Stereo

As in many low-level vision frameworks, one of the key ingredients is a proper data cost function.

In order to apply the proposed consensus framework to a specific vision task, one needs to provide a

data cost functionDp(θ) for each local region p, and decide an appropriate optimization method to

minimize the cost functionDp(θ) + λCp(θ, Z) in (4.6) for the alternating optimization algorithm,

where Cp(θ, Z) is the consistency term defined in (4.5), and often quadratic of θ as per (4.12) if as-

suming a generalized linear local model. This minimization needs to be carried out on every region—

independently and therefore can be done in parallel—and in every iteration, which accounts for most

of computation in the optimization algorithm. In this section, we describe the representation and

minimization for data cost in the context of a binocular stereo matching application. Many of the

techniques are relevant to other low-level applications such as shape from shading and optical flow.

71



We first define a pixel-based data cost volume V (n, z), where n = (x, y) ∈ Z2 denotes a pixel

location in the visual field (which we assume is equal to the left image, as is common in binocular

stereo) and z ∈ Z denotes the discrete disparity. This cost volume is also known as disparity space

image (DSI), e.g. in [71], whose value V (n, z) describes how well the pixel n = (x, y) in the left

view image matches the corresponding pixel n′ = (x + z, y) in the right view.2 There are many

methods for robustly computing this cost volume, including subpixel-sampled absolute difference [3],

Hamming distance of census transform [91], mutual information based cost followed by semi-global

matching [30] and learned cost functions using a convolutional neural network [92]. Unless explic-

itly stated, the methods described in this section assume a cost volume has been pre-computed and

supplied as input, but do not care which specific algorithm was used to compute it.

Given apre-computedpixel-based cost volumeV (n, z), the data costDp(θ) for eachpatchp canbe

simply calculated as the accumulation of costs for all pixels in the patch with corresponding disparity

predicted by the local modelZp(n; θ) = U(n)θ. More specifically, the data cost is defined as

Dp(θ) =
∑
n∈p

V (n,U(n)θ). (4.19)

where U(n)θ gives the disparity of pixel n predicted by the model θ. We assume U(n) to be the

slanted plane model defined in (4.9) for the rest of this chapter, but one can use other choices (e.g.

frontal parallel or locally quadratic models) as well.

Defining the region data cost as the accumulation of per-pixel costs as per (4.19) facilitates efficient

computation when regions are organized hierarchically. This is because data costs of the form (4.19)

naturally implyDp(θ) =
∑

iDci(θ), where region p is the union of non-overlapping child regions,

2Note that some methods compute this cost volume by comparing matches not for a single pixel, but a
small patch centered at that pixel instead. This is equivalently to making a frontal parallel assumption for a
small enough neighborhood around the pixel, and use the matching quality of the neighborhood as a proxy for
that of the centering pixel.
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i.e. p = ∪ici and ci ∩ cj = ∅, ∀i ̸= j.

The challenge of working with data costs in stereo (and other low-level vision problems) is that

the data cost functions are usually complicated, e.g. non-convex, flat in a large region , contains many

local minima, etc. These complication makes the local minimization (4.6) inefficient to perform, and

prone to getting trapped in poor local minima. In the rest of this section, we describe two approaches

to address this difficulty.

4.6.1 Tabulated Cost Function

One natural way of representing andminimizing a complicated cost functionDp (θ) is to tabulate it,

or in other words, densely sample it on a regular gridΘ = {θ(j)}j . 3 Denote the set of valid slanted

planes—the space of valid θ—as Ξ ⊂ R3. In this section, we first derive a finite boundary for Ξ,

and then find a grid step size such that any valid θ ∈ Ξ is sufficiently close to a sample on the grid

θ(j) ∈ Θ. Finally, we show that the tabulated grid for a region p ∈ Pk can be directly computed as a

transformed-sum from grids of its non-overlapping childrenHp ⊂ Pk−1 (see Figure 4.2).

We introduce local coordinates np = (xp, yp), because, as will be shown shortly, this allows

uniform quantization of valid θ space Ξ for all regions, regardless of their global locations in the

image. A region of size A×A has its local origin (0, 0) at top-left corner, and its local coordinates

(xp, yp) ∈ Ωp = [0, A]× [0, A]. The slanted plane local model is given as

Z(np; θ) = U(np)θ = θxxp + θyyp + θ0. (4.20)

Before diving into the detailed analysis, we first show some example tabulated cost volumes in Fig-

ure 4.3. The selected regions are centered at the same pixel but of various different scales. They contain

3When describing different local model parameters θ, we use subscript such as θp to indicate the model
parameter designated to a region p, and superscript such as θ(j) to indicate a sample in the parameter space.
We also use subscript to denote individual element of the θ ∈ R3 vector, written as θx, θy and θ0, and when
appearing together with region subscript p, we put a colon in the middle and write θp:x, θp:y and θp:0.
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(a) Left View. (b)Right View.

(c) Tabulated cost for a 4×4 region. (d) Tabulated cost for a 8×8 region.

(e) Tabulated cost for a 16×16 region. (f) Tabulated cost for a 32×32 region.

Figure 4.3: Tabulated cost function for regions centered at the same pixel but of different scales. We show one slice of

the 3D cost volumeD(θx, θy, θ0), minimizing the θx dimension out. In otherwords, the plots (c)-(f) visualize the value

of function f(θy, θ0) = minθx D(θx, θy, θ0). The white star in each plot indicates the ground truth parameter.

repetitive textures, and therefore the cost volumes for small regions (4×4 and 8×8) show periodic

patterns, and based on them we are not able to resolve which region on the other view best matches

the current one. When the region gets bigger (16×16), enough contextual information is gather and

a distinct minima emerges. As the region size keeps growing (32×32), it will begin to cross disparity

discontinuity, and the cost volume provides erroneous information (even though a prominent min-

ima still exists, it is not consistent to the region’s neighbors and therefore the consensus framework

will likely to declare the region an outlier).
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Bounds for valid model parameters

Let Zmin, Zmax be the minimum and maximum disparity of the scene, then for any valid slanted

plane θ ∈ Ξ, we have

Zmin ≤ Z(np; θ) ≤ Zmax, ∀np ∈ Ω = [0, A]× [0, A]. (4.21)

Theminimumandmaximumdisparity of a planar regionhappens at the extremepoints, and therefore

for a plane θ to be valid, we simply need to check

Zmin ≤ Z(np; θ) ≤ Zmax, for np ∈ {(0, 0), (0, A), (A, 0), (A,A)}. (4.22)

Note that this is a polyhedron with eight faces inR3. Next we find a cube

Ξ∗ =
[
θmin
x , θmax

x

]
×
[
θmin
y , θmax

y

]
×
[
θmin
0 , θmax

0

]
⊂ R3 (4.23)

that tightly bounds this polyhedron. It is easy to see that we can set θmin
0 = Zmin and θmax

0 = Zmax.

For θmin
x and θmax

x , the tightest bound can be found by the fact that

|θxA| = |Z(A, y)− Z(0, y)| ≤ Zmax − Zmin, =⇒ |θx| ≤
Zmax − Zmin

A
. (4.24)

The same bounds apply for θy .

Therefore we found Ξ∗ = {θ ∈ R3 : −Zmax−Zmin
A ≤ |θx|, |θy| ≤ Zmax−Zmin

A , Zmin ≤ θ0 ≤

Zmax} as the cube that most tightly bounds the valid θ space Ξ.
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Grid step size

Next we need to determine a grid step size, such that any valid θ ∈ Ξ is sufficiently close to a sample

on the grid. For two slanted planes θ and θ′, we define their ℓ∞ distance as the maximum disparity

difference between them

ℓ∞(θ, θ′) = max
np∈Ωp

∣∣Z(np; θ)− Z(np; θ
′)
∣∣ . (4.25)

Following [40], we define an ϵ-net as a set Θ ⊂ R3 such that for any valid θ ∈ Ξ, there exists a

θ(j) ∈ Θwhose distance to θ is not larger than ϵ, i.e.

∀θ ∈ Ξ, ∃θ(j) ∈ Θ, such that ℓ∞(θ, θ(j)) ≤ ϵ. (4.26)

For two slanted planes θ and θ′, as long as the differences of their θx and θy components are less

than 2δ/A and the difference of their θ0 components is less than δ, we can guarantee that their ℓ∞

distance is less than 3δ, because

∣∣(θxxp + θyyp + θ0)−
(
θ′xxp + θ′yyp + θ′0

)∣∣
≤ |xp| ·

∣∣θx − θ′x
∣∣+ |yp| ·

∣∣θy − θ′y
∣∣+ ∣∣θ0 − θ′0

∣∣
≤A

2
· 2δ
A

+
A

2
· 2δ
A

+ δ

=3δ, ∀(xp, yp) ∈ Ωp.

This imples that in order to achieve a 3δ
2 -net, we need to sample at step size

∆θx = ∆θy =
2δ

A
, ∆θ0 = δ. (4.27)
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Assumewe takeB+1 samples in the θ0 dimesion, and suppose we index each sample with a tuple

of three integers j = (jx, jy, j0) ∈ Z3. Given an index j, the coordinates of the plane θ(j) can be

calculated as

θ(j) =

(
jx

2δ

A
, jy

2δ

A
,
Zmin + Zmax

2
+ j0δ

)
, with δ =

Zmax − Zmin

B + 1
. (4.28)

The sampling index space is

jx ∈
[
−θmax

x A

2δ
− 1

2
,
θmax
x A

2δ
+

1

2

]
∩ Z,

jy ∈
[
−
θmax
y A

2δ
− 1

2
,
θmax
y A

2δ
+

1

2

]
∩ Z, (4.29)

j0 ∈
[
−B

2
,
B

2

]
∩ Z.

This sampling scheme creates a 3δ
2 -net in Ξ∗, which is a tight superset of valid slanted planes Ξ.

Hierarchical computation of the data costs

EvaluatingDp(θ
(j)) cost function at large number of samples θ(j) for large regions can be very expen-

sive. Fortunately, the spatial hierarchy structure of the framework implies that one does not need to

aggregate the data cost of a region from all the pixels n ∈ p directly; instead, it can be calculated as the

sum of its fixed number of child regions c ∈ Hp, reducing the computation complexity from expo-

nential (with respect to region level k) to constant (the size of setHp, which is 4 for two-dimensional

regions). In our tabulation scheme, we need tomake sure that the samples needed from regionp ∈ Pk

have already been calculated in the regions ofHp ⊂ Pk−1.

Assume we have a region p ∈ Pk and one of its child regions c ∈ Hp, and the size of child re-

gion is half the size of its parent, i.e. Ac = 1
2Ap. 4 The region centers are offset by (∆x,∆y) ∈

4We assume all regions are square in this chapter, but the analysis can also be extended to non-square rect-
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{(0, 0), (0, Ac), (Ac, 0), (Ac, Ac)}, and we consider the bottom right child as an example (the cal-

culation directly applies to the rest)

xp = xc +Ac, yp = yc +Ac. (4.30)

The disparity region model of the parent region is

Z(xp, yp; θp) = θp:xxp + θp:yyp + θp:0, (4.31)

which can be written in child region’s local coordinates as

Z(xc, yc; θ
c) = θp:x(xc +Ac) + θp:y(yc +Ac) + θp:0 (4.32)

= θp:xxc + θp:yyc +Ac (θp:x + θp:y) + θp:0.

This means we can transform the model parameter as

(θc:x, θc:y, θc:0) = (θp:x, θp:y, Ac (θp:x + θp:y) + θp:0) . (4.33)

In the index space, assume we have resolution δ in parent level, which gives

θp:x = jp:x
2δ

Ap
= jp:x

δ

Ac
, θp:y = jp:y

2δ

Ap
= jp:y

δ

Ac
, θp:0 =

Zmin + Zmax

2
+ jp:0δ. (4.34)

This means if we sample the child region at resolution δ
2 , we will get all the samples needed from θc to

anglar regions, as long as the length of each dimension of the child region is either a half or the same as the length
of its parent region in the same dimension.
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compute θp, and the index of the parent region can directly transfer to that of its child as

jp:x → jc:x, jp:y → jc:y, jp:0 → 2jc:0 + (jc:x + jc:y). (4.35)

4.6.2 Quadratic Data Cost Based on Semi-Global Matching

The tabulationmethod in the previous section describes a general approach for addressing the compli-

cation of the data costD(θ). However, even with the efficient hierarchical computation, the method

is still very expensive, because theΘ grid usually contains thousands of samples in order to cover the

full parameter space. In this section, we proposed a more stereo-specific cost function based on semi-

globalmatching (SGM) [30] and applied a quadratic approximation to reduce computation complex-

ity. This data cost is widely adopted in modern MRF-based stereo methods such as [87, 88, 89], etc.

Following [87], we first combine the gradients-based data cost (absolute difference of gradient in-

put image) and the Hamming distance of Census transform [91] as the raw cost volume, and then

apply semi-global block matching algorithm proposed in [30], during which lef-right consistency is

checked by computing both left and right disparity maps. This will give us an initial set of approxi-

mate disparity estimates ZSGM(n) at a semi-dense set of locations n ∈ ΩSGM. The data costs for every

region p are then defined as:

Dp(θ) =
∑
n∈p

wSGM(n)

(
U(n)θ − ZSGM(n)

)2

, (4.36)

wherewSGM(n) = 0 if n /∈ ΩSGM, 1/4 if there is a discontinuity inZSGM around n, and 1 otherwise.

Note that the data cost defined in (4.36) is a quadratic function of θ. Since the consistency cost

Cp(θ, Z) is also quadratic as per (4.12), their linear combination Dp(θ) + λCp(θ) is quadratic over

θ as well, and its minimization can be carried out with a simple 3×3Cholesky decomposition, which

is independent to patch size. Furthermore, the aggregation of children data costs to get that of parent
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can also be efficiently done by adding the quadratic coefficients together, which again is independent

to patch size. Therefore, by making a quadratic approximation on the local data model in (4.36) will

significantly reduce computation complexity of the alternating algorithm, and as will be shown in the

experiment section, this approximationdoes not losemuch accuracy because the powerful semi-global

matching step has already robustly cleaned up the cost volume.

4.7 Experiments and Evaluation

4.7.1 Binocular Stereo

We first evaluate the proposed framework using SGM-based quadratic data costs described in Sec-

tion 4.6.2 on the KITTI benchmark [21]. The KITTI dataset contains a total of 389 grayscale image

pairs of rural road scenes, captured using an autonomous driving platform equipped with a pair of

high-resolution cameras. A Velodyne laser scanner provides ground truth at a subset of pixels in each

scene. This ground truth ismade available for a subset of 194 image pairs—the training set—andwith-

held for the remaining image pairs that form the testing set. A website associated with the database

tracks the performance of stereo algorithms on the testing set. Note that while the benchmark also

contains temporally-adjacent stereo frames that allow simultaneous reasoning about optical flow and

stereo, we ignore those extra frames and consider the pure stereo problem here.

Figure 4.4 visualizes various aspects of the internal representation of our framework on conver-

gence, for three scenes in the KITTI training set. The top row shows the consensus global disparity

map, andRows 2–6 visualizes a regularly-spaced subset of in the inlier statuses Ip. Row 7 provides an-

other view of variables Ip, by explicitly showing some of the “support regions” formed as the union of

all patches in Jn, for various pixelsn. These regions by-and-large group together points whose dispar-

ity values would be well-explained by a slanted planemodel. As expected, there is significant variation

in the size and shapes of the support regions across each scene, matching the scale of the underlying
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Figure 4.4: Framework output for three image pairs from the KITTI training set. (Row 1) Scene map formed through

consensus of predictions from all inlying regions. (Row 2-6) Inlier statuses of regions at different scales, superimposed

on the left images of each stereo pair. For clarity, we only show the statuses of a non-overlapping subset of regions at

each scale. (Row 7)Boundaries (in red) of the support region for various pointsn (in blue), formed as the union of their

inlying consensus set Jn. (Row 8) Degree of consensus |Jn| (blue saturation) and sites of erroneous estimates (red),

defined as estimates with error greater than 3 pixels. (Erroneous estimates whose ground truth disparities place them

outside the field of view of the right camera are shown as dark red.)
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Figure 4.5: Error vs. degree of consensus |Jn|. Blue curve shows percentage of pointswith |Jn| above different thresh-
olds, and red curve their corresponding error rate, in terms of percentage with error> 3 px. These are computed over

all pixels with ground truth data available, across all images in the KITTI training set.

scene structures. This highlights the distinction from superpixel-basedMRF approaches [87, 88, 89],

which require choosing a single scale for the entire scene. Also note that for many pairs of points

that do not directly lie in each others’ support regions, the regions themselves have significant overlap.

Through such overlap, the consensus estimate at a point has benefited from aggregation across regions

that are larger than the union of the set of patches that include it.

The final row in Figure 4.4 visualizes the degree of consensus |Jn| at all points (blue saturation), si-

multaneouslywith locations of erroneous estimates (red). We see thatmanyof the errors occur around

object boundaries and near small scene structures, which are also points where |Jn| is low. We quan-

tify this observation in Figure 4.5, and find that average estimation error drops rapidly as we discard

points with the lowest values of |Jn|. This another benefit of the rich internal representation: in addi-

tion to providing a global scene estimate, it also provides a natural measure of point-wise confidence

in this estimate.

Table 4.1 compares the consensus frameworkwith other state-of-the-art stereo algorithms5 in terms

5This table was extracted from the official website on early 2015 and only includes methods that use just one
stereo pair as input.
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Method Avg. Error > 2px > 3px > 4px > 5px Exec. TimeAll NOC All NOC All NOC All NOC All NOC
ATGV [66] 1.6px 1.0px 9.05% 7.08% 6.88% 5.02% 5.76% 3.99% 5.01% 3.33% 6min: 8 cores
wSGM [75] 1.6px 1.3px 8.72% 7.27% 6.18% 4.97% 4.89% 3.88% 4.11% 3.25% 6s: 1 core

AARBM [17] 1.2px 1.0px 8.70% 7.36% 5.94% 4.86% 4.56% 3.67% 3.69% 2.96% 0.25s: 1 core
*PCBP [87] 1.1px 0.9px 7.62% 5.08% 5.37% 4.04% 4.29% 3.14% 3.64% 2.64% 5min: 4 cores

*StereoSLIC [88] 1.0px 0.9px 7.20% 5.76% 5.11% 3.92% 4.04% 3.04% 3.33% 2.49% 2.3s: 1 core
*DDS-SS [83] 1.0px 0.9px 6.96% 5.91% 4.59% 3.83% 3.49% 2.90% 2.83% 2.36% 1min: 1 core

*PCBP-SS [88] 1.0px 0.8px 6.75% 5.19% 4.72% 3.40% 3.75% 2.62% 3.15% 2.18% 5min: 1 core
*SPS-St [89] 1.0px 0.9px 6.28% 4.98% 4.41% 3.39% 3.52% 2.72% 3.00% 2.33% 2s: 1 core

MC-CNN [92] 1.0px 0.8px 5.39% 4.30% 3.84% 2.61% 3.01% 2.04% 2.52% 1.75% 100s: GPU
*Proposed: All n 0.9px 0.8px 5.88% 4.85% 4.10% 3.30% 3.26% 2.59% 2.74% 2.16% 6s: 6 cores

Only
|Jn| ≥ 200

(96.4%
density)

0.8px 0.6px 4.59% 3.50% 2.98% 2.14% 2.26% 1.56% 1.85% 1.24%

Lowest Second Lowest Third Lowest *: Same Matching Cost

Table 4.1: Comparison with the state-of-the-art on the KITTI testing set. Performance is measured in terms of average

error, as well as percentage of estimates with error greater than different thresholds. For eachmetric, the ``All'' column

reports values computed over all ground truth pixels, and ``NOC'' over only those those that arewithin the field-of-view

of the right camera. The last row reports the accuracy of our method's estimates that have confidence measure |Jn|
above a threshold, and correspond to errors values computed over 96.4% of the points with ground truth available.

of various error quantiles on the KITTI testing set. The most direct comparisons of our results are

with those of [83, 87, 88, 89], since these methods all use the same approach to derive their data costs

(census transform and gradient-based matching with SGM). These only differ—from us, and from

each other—in their approach to spatial aggregation. The consensus framework outperforms all of

these methods on all error metrics, while also having a low execution time.

Table 4.1 also reports theperformanceof theMC-CNN[92] algorithm,which computes point-wise

matching costs using a multi-layer convolutional neural network. This produces lower error values

than all other methods, including ours, in exchange for greater computation (the method takes 100

seconds on a GPU with 2880 CUDA cores). This is encouraging, because improved pixel-wise data

costs like this one can be directly substituted into the consensus framework to enhance accuracy.

We demonstrate the benefit of the pixel-wise confidence measure in our framework by reporting a

second set of results in Table 4.1. This is simply produced by discarding a small number of pixels with
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Method Grid step size > 3px NOC > 4px NOC Exec. Time
Quadratic approximation of SGM costs N/A 4.16% 3.28% 6s: 6cores
Quadratic approximation of census transform costs N/A 20.77% 17.31 % 6s: 6cores
Tabulated SGM costs 1 4.11% 3.30 % 41s: 8cores
Tabulated SGM costs 2 4.23% 3.47 % 13s: 8cores
Tabulated SGM costs 4 4.71% 3.93 % 3s: 8cores
Tabulated census transform costs 1 8.25% 7.27 % 41s: 8cores
Tabulated census transform costs 2 8.97% 8.13 % 13s: 8cores
Tabulated census transform costs 4 10.01% 8.68 % 3s: 8cores

Table 4.2: Comparison of tabulated cost functions with the quadratic-approximated cost functions, using SGM-

processed data costs or raw census transform data costs. The evaluation is done on a subset of 20 image pairs in the

training set.

the lowest degree of consensus |Jn| (i.e. those with degree less than 200 out of the maximum possible

value of∼ 5500). This second set of error quantiles—computed nowon the high-confidence set with

only ∼ 3.6% fewer pixels—are the smallest of all methods. In this mode, the proposed algorithm

efficiently produces very reliable disparity estimates, at all but a small fraction of locations. This also

suggests a strategy for leveraging sophisticatedmatching strategies such as [92] when execution time is

a bottleneck (such as for automated driving applications)—one where the more expensive matching

costs are computed only for the small number of low-confidence pixels.

Finally, we test the tabulated data costs method described in Section 4.6.1, and also try the raw

data costs without SGM processing. The evaluation results are shown in Table 4.2. We observe that

when using SGM-processed data costs, the tabulation approach achieves similar accuracy as quadratic

approximation approach if the grid step size is small enough, and that the performance degenerates

gracefully as the step size increases, with execution timedecreasing quadratically. We also found that al-

gorithms using raw census transformdata costs produce results inferior to those using SGM-processed

data costs. This is because without the weak spatial filtering and left-right consistency check provided

by SGM, the raw data costs are very noisy and erroneous, leading to reduced accuracy in the final es-

timates. This is particularly evident from the large errors of the quadratic approximation of the raw

costs (second row of Table 4.2), because the noisy raw costs are poorly approximated by the smooth

quadratic functions. The results suggest that in addition to the choice of inference framework, the
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quality of data costs also plays a crucial role in the final reconstruction. For stereo application, the

well-established SGM algorithm is especially beneficial for correcting erroneous matches in the raw

data cost volume and thus providing amuchmore robust starting point for spatial reasoning with the

inference framework.

4.7.2 Shape from Shading

The shape from shading algorithm in the previous chapter (Section 3.5.2, detailed in [86]) is in fact

a preliminary version of the proposed consensus framework. The algorithm assumes a quadratic lo-

cal model and does inference on a set of overlapping regions at different scales. For each region, the

algorithm simultaneously determines whether it is an inlier or outlier, and for inliers, which shape

proposal to take. The algorithm also enforces the estimates of inlying regions to be consistent and

requires the result normal vector field able to form a continuous surface through an integrability con-

straint. Finally, a cooling schedule is present in the algorithmwhich induces a temporal coarse-to-fine

refinement and helps the alternating optimization to avoid being stuck at poor local minima.

There are also several differences. In the shape from shading reconstruction, we first compute a

set of possible shape proposals from a given shading region, and then fix that set in the following it-

erations. This is equivalent to say the possible θ space Ξ is restricted to a finite set during alternate

optimization. The reason we did this is because by the time we developed the shape from shading al-

gorithm, the computationally efficient hierarchical structure was not discovered and performing con-

tinuous optimization to find best θ inR5 for every region in every iterationwas formidably expensive.

Another difference is that when aggregating from local models to global normal field and depth map,

we do not simply take the average, but use a normal-to-depth integration algorithm [19]. The reason

for this step is that for this particular application, we have additional knowledge about the physical

scene property (normal vector field needs to be integrable).

Figure 4.6 visualizes the inlier maps Ip output by the algorithm at different scales. We observe that
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(a) Input image (b) Inlier map Ip at 5×5 scale (c) Inlier map Ip at 9×9 scale

(d) Inlier map Ip at 17 × 17
scale

(e) Inlier map Ip at 33 × 33
scale

(f)Confidencemap |Jn|

Figure 4.6: Similar to Figure 4.4, we show the inlier and confidence maps output by our framework for the shape from

shading application. Red squares in subplots (b)-(e) indicate those regions are inferred as outliers, which are usually

caused by discontinuities in normal vector field.

the detected outlier regions usually stride the discontinuity boundaries of the normal vector field as

expected. Figure 4.4 (f) shows the pixelwise confidence map |Jn|, which has high values at smooth

regions because there are more inliers around the center pixel that provide reliable local estimates.
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4.8 Conclusion

In this chapter, we introduced a framework for low-level vision with local scene models that reasons

with a large overlapping,multi-scale set of regions, to determinewhich of them are outliers, andwhich

of them can generate model-based scene value estimates while being consistent with each other. De-

spite the larger variable space, and the greater complexity of the consensus objective, we showed that

optimization can be carried out efficiently by recognizing that the regions can be organized hierarchi-

cally. We presented an example application of the framework to the stereo matching problem, and

showed two different approaches onmodeling andminimizing the data cost. An evaluation on stereo

estimation found that the framework outperforms existing approaches to spatial reasoning. We also

discussed the connection and differences of the proposed framework to the shape from shading re-

construction algorithm presented in the previous chapter.
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5
Discussion and Future Work

This dissertation presents theory and algorithms for physics-based visual inference, which aims to re-

cover scene properties from images. Visual inference is the inverse of the image formation process,

and is almost always ill-posed because information is inevitably lost when images are formed. This

dissertation addresses the information loss in both steps during image formation: the physical process

where light interacts with objects in the scene according to their geometry andmaterial properties, and

themeasurement processwhere consumer digital cameras typically distort the radiometric signal in or-

der to produce visually pleasing images. We explicitly account for the inherent uncertainties during

inference, by reducing them with local models and reporting them to downstream applications.

In Chapter 2, we advocate the use of probabilistic approaches over deterministic ones for color de-

rendering, showing that probabilistic de-rendering embraces the multivalued nature of the rendered-
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color-to-scene-colormapand thereforedoesnot require discarding any imagedatausing ad-hoc thresh-

olds, which is usually necessary in deterministic de-rendering. There are still several unexplored direc-

tions that can further improve our ability to infer linear scene colors from distorted sRGB images:

• Currently we use non-parametric models such as Gaussian process or support vector regres-

sion, which can accurately adapt to the statistical nature of the data, but on the other hand is

inefficient in terms of usage and storage. Because of the large number of implicit parameters

(i.e. the underlying training data), the models are usually slow to apply on test data and take

lots of space in memory or on disk. This inefficiency gets even worse as the amount of training

data grows. It will be useful to develop compact representations for probabilistic de-rendering.

• There are several effects in the color processing pipeline that have not been fully examined

yet. One example is the (auto-)white balance module that is widely available in today’s digital

cameras. Although a linear process, it can significantly affect the gain factors of one or more

color channels and hence changes the overall forward mapping. It is worth digging in to see

whether reliable white balance parameters are available from the output metadata (e.g. EXIF

tags), or dedicating an additional step to estimate them from the compact images using natural

image statistics.

• Another shortcoming of the proposed de-rendering approach is the requirement of an expen-

sive offline calibration process, which needs collection of RAW/JPEG pairs on a variety of dif-

ferent scene colors. Inpractice, this is possible only by artificially creating extreme illuminations

(e.g. using gel filters). The process also needs to be repeated to every different imaging mode

of every camera. Such burdens could possibly be reduced by studying and understanding the

characteristics of forward and backward mappings, which might enable calibration by extrap-

olation with fewer data points, and transferring the calibrated model from one imaging mode

to another imaging mode of the same camera, or even from one camera to another camera.
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In Chapter 3, we present mathematical analysis showing that by assuming a quadratic local model,

the ambiguities of shape from shading can be dramatically reduced from a continuous manifold to a

small discrete set. There are a few theoretical questions remains to be answered:

• The analysis is performed in two essentially different setups—extrinsic and intrinsic—and the

derived uniqueness properties are qualitatively different. Two things change between these

setups: the geometric families of local patches are different because of the change of coordinate

systems, and the imaging models are different because the curvature foreshortening is ignored

in the intrinsic setup for mathematical convenience. It is worth further exploring which one

of the two differences causes the drastic change in the uniqueness property.

• The intrinsic setup shares strong connections to the differential geometry analysis by Kuns-

berg and Zucker [42, 43], but they are still essentially different because of the approximation in

our imaging model that ignores the curvature foreshortening effect. One advantage of Kuns-

berg and Zucker’s work is that the curvature information can be inferred from shading in a

lighting-invariant way, and showing direct and concrete connection to their work will help us

understand how to apply our theory and algorithms to perform shape inference without the

knowledge of lighting, or at least in a more robust way with respect to lighting. To do so, we

will need to derive intrinsic uniqueness properties without ignoring curvature foreshortening,

which potentially needs new or different mathematical tools.

In Chapter 4, we introduce a multi-scale framework for physics-based inference that uses a dense,

overlapping set of image regions with localmodels, and show that when the regions are organized into

a spatial hierarchy, inference can be done in an efficient and parallel way. We demonstrate the superior

performance of framework on the binocular stereo application with respect to other state-of-the-art

algorithms, but there are still a few directions that need to be explored and can make the framework

useful for more general visual inference tasks:
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• The current framework still depends on a well-performing domain-specific data cost, such as

semi-global matching (SGM) [30] in binocular stereo. One important direction of future re-

search is to alleviate this dependency and make the framework more robust to the input data

cost. Section 4.6.1 presents potential ways of sampling amore generic data cost (which does not

need to be quadratic or even smooth), but the computation complexity is still high. We have

also explored the idea of sampling the parameter space adaptively instead of uniformly—that

is first coarsely sample the parameter space, and then let the consensus output in each itera-

tion guide the algorithm to perform more sampling at places that are more likely to yield a

better local minima. Some preliminary experiments showed promising results, but the idea is

still pre-mature and more work needs to be done to fully prove the efficacy of concept and to

incorporate it into a robust algorithm.

• Another important direction of future research lies in applying the framework to problems in-

volving estimating different physical properties of the same scene (such as material and shape),

with different piecewise local models for each, when the aggregation regions of one property

suggest, but do not determine, those of the other.

• Many properties of the consensus framework—multi-scale collaboration, implementation as

a distributed architecture of computational units carrying out the same operations, coarse-to-

fine evolution of the scene map, etc.—mimic behavior observed in biological systems [55]. It

would be interesting to explore these links systematically—to investigate whether the frame-

work, or some variation of it, can serve as a faithful model for biological processing; as well as

whether insights from biology can be used to further improve the framework.
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A
Appendix to Chapter 3

A.1 Proofs of Lemma 3.3

In this appendix, we provide a proof for Lemma 3.3 from Section 3.3.1. As a reminder, the lemma is

defined in terms of matricesA ∈ R3×3 which are related to the coefficient vectors as:

A =


−2a1 −a3 −a4

−a3 −2a2 −a5

0 0 1

 . (3.6)

The statement of the lemma itself is reproduced below.
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Lemma 3.3 : Let A and Ã correspond to two coefficient matrices of the form in (3.6), and l and l̃ to two

lighting vectors. If,
x̄TAT llTAx̄

x̄TATAx̄
=

x̄T ÃT l̃l̃T Ãx̄

x̄T ÃT Ãx̄
, ∀x̄ ∈ Ω, (3.12)

Rank(VΩ) = 15, Rank(A) ≥ 2, and lTAx̄ > 0, ∀x̄ ∈ Ω (i.e., no point is in shadow), then

AT llTA = ÃT l̃l̃T Ã, ATA = ÃT Ã. (3.13)

Moreover, if Rank(A) = 2, then Rank(Ã) = 2 and both A and Ã have a common null space.

The expression in (3.12) equates two rational forms in x. To prove the lemma, we will show that

the equality holds for all x if we have a sufficient number of non-degenerate locations in the patch.

Then, we will show that the corresponding coefficients in the quadratic expressions in the numerator

and denominator must be equal when they are of the form in (3.6) and the conditions of Lemma 3.3

are met, essentially ruling out the possibility of a common factor or scaling term. To this end, we

introduce another lemma, with proof, and then present the proof of Lemma 3.3.

Lemma A.1. Let P,Q, P̃ , Q̃ ∈ R3×3 be symmetric matrices. Then, P = tP̃ and Q = tQ̃, where

t ̸= 0 is a constant scalar, if
x̄TPx̄

x̄TQx̄
=

x̄T P̃ x̄

x̄T Q̃x̄
, ∀x̄ ∈ Ω, (A.1)

Rank(VΩ) = 15, and,
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Case 1: All of the following conditions are satisfied:

q11 ̸= 0, q22 ̸= 0, q33 ̸= 0, (A.2)

4(p11q12 − p12q11)(p22q12 − p12q22) + (p11q22 − p22q11)
2 ̸= 0, (A.3)

4(p11q13 − p13q11)(p33q13 − p13q33) + (p11q33 − p33q11)
2 ̸= 0, (A.4)

4(p22q23 − p23q22)(p33q23 − p23q33) + (p22q33 − p33q22)
2 ̸= 0. (A.5)

Case 2: All of the following conditions are satisfied:

pj2, p2j , qj2, q2j , p̃j2, p̃2j , q̃j2, q̃2j = 0, ∀j ∈ {1, 2, 3}, (A.6)

q11 ̸= 0, q33 ̸= 0, (A.7)

4(p11q13 − p13q11)(p33q13 − p13q33) + (p11q33 − p33q11)
2 ̸= 0. (A.8)

Proof of Lemma A.1: We re-write (A.1) as

(
x̄Ti Px̄i

)
·
(
x̄Ti Q̃x̄i

)
=
(
x̄Ti P̃ x̄i

)
·
(
x̄Ti Qx̄i

)
, (A.9)

and note that this is fourth-order polynomial equation in x̄i. Combining these equations ∀x̄i ∈ Ω,

we have

VΩC(P,Q,P̃ ,Q̃)
= 0, (A.10)

whereC
(P,Q,P̃ ,Q̃)

∈ R15 are the coefficients of the polynomial, and are of the form (pij q̃kl − p̃ijqkl).

Since VΩ is rank 15, the above equation implies thatC
(P,Q,P̃ ,Q̃)

= 0. We now consider different sets

of coefficients to prove the lemma.
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Case 1. First look at the coefficients of x4, y4, x3y, xy3, x2y2:

x4 : p11q̃11 = p̃11q11 (A.11)

y4 : p22q̃22 = p̃22q22 (A.12)

x3y : p11q̃12 + p12q̃11 = p̃11q12 + p̃12q11 (A.13)

xy3 : p22q̃12 + p12q̃22 = p̃22q12 + p̃12q22 (A.14)

x2y2 : p11q̃22 + 4p12q̃12 + p22q̃11 = p̃11q22 + 4p̃12q12 + p̃22q11 (A.15)

Since q11 ̸= 0, q22 ̸= 0, we can define t = q̃11/q11 and s = q̃22/q22. Then (A.11) and (A.12) gives us

q̃11 = q11t, p̃11 = p11t, q̃22 = q22s, p̃22 = p22s. (A.16)

Substitute into (A.13), (A.14), and (A.15), we have

−q11p̃12 + p11q̃12 = (p11q12 − p12q11)t,

(p12q22 − p22q12)s− q22p̃12 + p22q̃12 = 0,

(p11q22 − p22q11)s− 4q12p̃12 + 4p12q̃12 = (p11q22 − p22q11)t. (A.17)

This can be thought of as a linear system of equations on (s, p̃12, q̃12), with one obvious solution

(t, p12t, q12t). This solutionwill beuniquewhen the corresponding coefficientmatrix is non-singular,

det

∣∣∣∣∣∣∣∣∣∣
0 −q11 p11

(p12q22 − p22q12) −q22 p22

(p11q22 − p22q11) −4q12 4p12

∣∣∣∣∣∣∣∣∣∣
̸= 0. (A.18)
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Expanding this gives us (A.3), and therefore we have

[p̃11, p̃12, p̃22q̃11, q̃12, q̃22] = t[p11, p12, p22, q11, q12, q22]. (A.19)

This approach can be used to show the same relationship for other terms in P,Q, P̃ , Q̃. Specifi-

cally, the coefficients of{x4, x3, x2, x, 1} giveus that [q11, q13, q33, p11, p13, p33] and [q̃11, q̃13, q̃33, p̃11, p̃13, p̃33]

are proportional, and since they are linked by q11 and q̃11, the constant of proportionalitymust also be

t. Similarly, looking at the coefficients of {y4, y3, y2, y, 1} gives us that [q22, q23, q33, p33, p23, p33]

and [q̃22, q̃23, q̃33, p̃33, p̃23, p̃33] are proportional, with q22 and q̃22 linking the proportionality con-

stant to t.

Case 2. For this case, we need to only look at the coefficients of {x4, x3, x2, x, 1}, which gives us

[q11, q13, q33, p11, p13, p33] = t[q̃11, q̃13, q̃33, p̃11, p̃13, p̃33].

Proof of Lemma 3.3: Without loss of generality, we rotate and translate the co-ordinate system so that

a3 = 0, and (0, 0) ∈ Ω, and define P = AT llTA,Q = ATA, P̃ = ÃT l̃ l̃T Ã and Q̃ = ÃT Ã. We

consider two cases corresponding to the rank ofA.

Case 1. Rank(A) = 3: We apply case 1 of Lemma A.1 by showing that the conditions (A.2)-(A.5)

hold:

1. SinceA is invertible, we have q11 = 4a21 ̸= 0 and q22 = 4a22 ̸= 0. Also, q33 = a24+a25+1 ̸=

0, and therefore, (A.2) is satisfied.

2. For (A.3) to be satisfied, we need

256a41a
4
2

(
l2x + l2y

)2 ̸= 0, (A.20)

96



where l = [lx, ly, lz]. SinceA is invertible, a1 ̸= 0 and a2 ̸= 0. Note that (A.3) is violated if

lx = ly = 0 and l̃x = l̃y = 0 (if not the latter, we can switch {a, l}, and {ã, l̃}), but in that

case, it is easy to see that

AT llTA =


0 0 0

0 0 0

0 0 l2z

 , ÃT l̃ l̃T Ã =


0 0 0

0 0 0

0 0 l̃2z

 , (A.21)

which in turn impliesAT llTA = tÃT l̃ l̃T Ã, with t = l2z/l̃
2
z .

3. For (A.4)-(A.5) to be satisfied, we need

16a41
(
(a25 + 1)l2x + (lz − a5ly)

2
)2 ̸= 0, (A.22)

16a42
(
(a24 + 1)l2y + (lz − a4lx)

2
)2 ̸= 0. (A.23)

Since a1, a2 ̸= 0, these conditions will be violated when lx = 0 and lz − a5ly = 0; or ly = 0

and lz − a4lx = 0, respectively. But these cases can be ruled out, since they result in the point

(0, 0) being in shadow.

Therefore, from case 1 of Lemma A.1 we have that

AT llTA = tÃT l̃l̃T Ã, ATA = tÃT Ã. (A.24)

To show t = 1, we first look at the top-left 2× 2 block of the matrix

 4a21

4a22

 = t

 4ã21 + ã23 2ã3(ã1 + ã2)

2ã3(ã1 + ã2) 4ã22 + ã23

 , (A.25)
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which implies

a1 = p1
√
tã1, a2 = p2

√
tã2, ã3 = 0, (A.26)

with p1 = ±1, p2 = ±1. Next compare the (1, 3) and (2, 3) entry of the matrices (A.24), we have


2a1a4 = 2tã1ã4

2a2a5 = 2tã2ã5

, ⇒


a4 = p1

√
tã4

a5 = p2
√
tã5

. (A.27)

Finally, look at the (3, 3) entry of the matrices in (A.24)

1 + a24 + a25 = t(1 + ã24 + ã25), ⇒ t = 1. (A.28)

Case 2. Rank(A) = 2: Again, without loss of generality, we assume that the rank deficiency in A is

caused by a2 being equal to 0. Before we can apply case 2 of Lemma A.1, we need to show that there

is no possible solution for (ã, l̃)where ã2 ̸= 0, or ã3 ̸= 0. To do so, we look at the expression for Ix̄

in terms of a and l:

Ix̄ =
−(2a1x+ a4)lx − a5ly + lz√

(2a1x+ a4)2 + a25 + 1
. (A.29)

Note that the intensity here is independent of the coordinate y. Since (ã, l̃) produce the same set of

intensities, they too must be independent of y, which implies that ã2 = ã3 = 0.

We can then simply apply case 2 of Lemma A.1, using the same approach as in case 1 above, where

(A.6),(A.7) are directly satisfied by the constraints on a and that ã2, ã3 = 0, and (A.8) is satisfied by

a1 ̸= 0, and the constraint that the point (0, 0) not be in shadow.
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A.2 Proofs of Theorem 3.6

Theorem 3.6. Given intensities I(x, y) in an image patchΩ, generated by approximate imaging model

in Definition 3.5 from a patch/lighting pair (P(θ, a1, a2, a3), l), then generically for any given lighting

l̃, there are at most four intrinsic quadratic patchesP(θ̃, ã1, ã2, ã3) that can exactly explain the image.

We first write the Lambertian rendering equation (3.39) in a matrix form, and then elaborate the

implication of approximate imaging model in Definition 3.5 to uniqueness properties of intrinsic

quadratic patch. Define a symmetric matrix

A =

 −2a1 −a3

−a3 −2a2

 , (A.30)

we can re-write the un-normalized normal vector of the patch n0 = [ns, nt, 1]
T in matrix form

 ns

nt

 = A

 s

t

 . (A.31)

For notational simplicity, we further define

l[F ] =


ls

0

ln

 , s =


s

t

1

 , A =

 A

1

 , (A.32)

then the Lambertian intensity in (3.39) can be written in a the following matrix form

I(s, t) =
nsls + ln√
n2
s + n2

t + 1
=

lT[F ]A s√
sTATA s

. (A.33)
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Definition 3.5 implies a linear relationship between image coordinate (x, y) and the intrinsic patch

coordinate (s, t)with a 2× 2matrixP , and therefore

I(x, y) = I(P−1(s, t)) =
lT[F ]AP−1x√

xTP−TATAP−1x
=

lT[F ]W x√
xTW TW x

, (A.34)

where

x =


x

y

1

 , P =

 P

1

 , W = AP−1. (A.35)

Next we state and prove two lemmas, whose results will lead to our final proof to Theorem 3.6.

Lemma A.2. All entries in P matrix are linear combination of sin θ and cos θ.

Proof. First note that matrixP is the upper-left 2× 2 block of framematrixF = [fs, ft,n0]. There-

fore we only need to show that all entries in F matrix are linear combination of sin θ and cos θ. We

choose a local reference frameF (0) with θ = 0, and any other local frameF (θ) with parameter θ can

be obtained by a rotation

F (θ) = R(l,θ)F (0), (A.36)

whereR(l,θ) is a rotation matrix that rotates the frame across axis l for an angle θ. More specifically,

R(l,θ) =


cos θ + l2x(1− cos θ) lxly(1− cos θ)− lz sin θ lxlz(1− cos θ) + ly sin θ

lxly(1− cos θ) + lz sin θ cos θ + l2y(1− cos θ) lylz(1− cos θ)− lx sin θ

lzlx(1− cos θ)− ly sin θ lzly(1− cos θ) + lx sin θ cos θ + l2z(1− cos θ)

 ,

(A.37)

and note that each entry in the matrix is a linear combination of sin θ and/or cos θ . Finally, we can
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write the orthographical projection matrixP as

P (θ) = R
(l,θ)
1:2,1:2F

(0)
1:2,1:2 +R

(l,θ)
1:2,3F

(0)
3,1:2, (A.38)

whose entries are also linear combinations of sin θ and cos θ.

Lemma A.3. Let

W =

 W

1

 , W̃ =

 W̃

1

 (A.39)

correspond to two coefficient matrices of the form in (A.35), and

l = (ls, 0, ln)
T , ℓ̃ =

(
l̃s, 0, l̃n

)T
, ls ≥ 0, l̃s ≥ 0 (A.40)

two lighting vector in each of the two local frames. If

lTW x√
xTW TW x

=
ℓ̃
T
W̃ x√

xTW̃
T
W̃ x

(A.41)

hold for a non-degenerate set of x, then generically, we have

l = ℓ̃, W̃ =


1

±1

1

W . (A.42)

Proof. SinceW and W̃ are affine matrices, and in the generic setup, assumingW matrix is full-rank,

we can apply the Lemma 3.3, which implies

W T llTW = W̃
T
ℓ̃ ℓ̃

T
W̃ , W TW = W̃

T
W̃ . (A.43)
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Substituting in the first equationwith the special form ofW , W̃ in (A.39) and l, ℓ̃ in (A.40), we have


lsw11

lsw12

ln


[
lsw11 lsw12 ln

]
=


l̃sw̃11

l̃sw̃12

l̃n


[
l̃sw̃11 l̃sw̃12 l̃n

]
. (A.44)

Comparing the (3,3)-entry, with the knowledge that the central pixel is not in shadow,wehave ln = l̃n.

Further comparing the (1,3)- and (2,3)-entry gives us

lsw11 =l̃sw̃11, (A.45)

lsw12 =l̃sw̃12. (A.46)

Generically, assume l̃s ̸= 0, and define t = ls/l̃s, and we have w̃11 = tw11, w̃12 = tw12.

Now look at the second equation in (A.43), and substitute in the special form ofW , W̃ , we have

w2
11 + w2

21 = w̃2
11 + w̃w2

21 =⇒ w̃2
21 = (1− t2)w2

11 + w2
21 (A.47)

w11w12 + w21w22 = w̃11w̃12 + w̃21w̃22 =⇒ w̃21w̃22 = (1− t2)w11w12 + w21w22

(A.48)

w2
12 + w2

22 = w̃2
12 + w̃2

22 =⇒ w̃2
22 = (1− t2)w2

12 + w2
22 (A.49)

Multiplying (A.47) and (A.49) and comparing with the square of (A.48), we have

(1− t2)(w2
11w

2
22 + w2

21w
2
12) = 2(1− t2)w11w12w21w22. (A.50)

Generically, assumew11w22 ̸= w12w21, we havew2
11w

2
22+w2

21w
2
12 > 2w11w12w21w22, and there-

fore t2 = 1. Since ls > 0 and l̃s > 0, we have t = 1, i.e. ls = w̃ls.
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Finally, going back to (A.47)-(A.49), we have

 w21

w22

 = ±

 w̃21

w̃22

 ,

sign cannot be resolved from the information we have.

ProofofTheorem3.6: Suppose there are two intrinsic quadratic patches / lightingpair{P(θ, a1, a2, a3), l}

and{P
(
θ̃, ã1, ã2, ã3

)
, ℓ̃} that generate the sameobserved image I(x, y). According toLemmaA.3,

we have

ÃP̃
−1

=

 1

±1

AP−1 =⇒ Ã =

 1

±1

AP−1P̃ . (A.51)

Note that A and Ã are a symmetric matrices with parameter a1, a2, a3 and ã1, ã2, ã3, and that P

and P̃ is a function of θ and θ̃ as shown in (A.38).

Now we take patch P(θ, a1, a2, a3) as ground truth, and consider the problem that “what set

of possible
(
θ̃, ã1, ã2, ã3

)
could satisfy (A.51)”. The only constraint here is that Ã needs to be a

symmetric matrix. Taking difference of its (1, 2)-entry and (2, 1)-entry and equating it to zero will

result in a linear equation on the unknown variable θ̃, and as proved in Lemma A.2, this equation

must be linear with respect to sin θ and cos θ, which is

αi sin θ + βi cos θ + γi = 0, (A.52)

with i = 1, 2 denoting the plus or minus sign of Equation (A.51). Generically, there are exactly two

solutions to each of the equation (A.52), and therefore four in total when counting the sign flip.
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