
QUICK TIPS 
(--THIS SECTION DOES NOT PRINT--) 

 
This PowerPoint template requires basic PowerPoint 
(version 2007 or newer) skills. Below is a list of 
commonly asked questions specific to this template.  
If you are using an older version of PowerPoint some 
template features may not work properly. 
 

Using the template 
 

Verifying the quality of your graphics 
Go to the VIEW menu and click on ZOOM to set your 
preferred magnification. This template is at 100% 
the size of the final poster. All text and graphics will 
be printed at 100% their size. To see what your 
poster will look like when printed, set the zoom to 
100% and evaluate the quality of all your graphics 
before you submit your poster for printing. 
 
Using the placeholders 
To add text to this template click inside a 
placeholder and type in or paste your text. To move 
a placeholder, click on it once (to select it), place 
your cursor on its frame and your cursor will change 
to this symbol:         Then, click once and drag it to 
its new location where you can resize it as needed. 
Additional placeholders can be found on the left 
side of this template. 
 
Modifying the layout 
This template has four 
different column layouts.  
Right-click your mouse 
on the background and  
click on “Layout” to see  
the layout options. 
The columns in the provided layouts are fixed and 
cannot be moved but advanced users can modify any 
layout by going to VIEW and then SLIDE MASTER. 
 
Importing text and graphics from external sources 
TEXT: Paste or type your text into a pre-existing 
placeholder or drag in a new placeholder from the 
left side of the template. Move it anywhere as 
needed. 
PHOTOS: Drag in a picture placeholder, size it first, 
click in it and insert a photo from the menu. 
TABLES: You can copy and paste a table from an 
external document onto this poster template. To 
adjust  the way the text fits within the cells of a 
table that has been pasted, right-click on the table, 
click FORMAT SHAPE  then click on TEXT BOX and 
change the INTERNAL MARGIN values to 0.25 
 
Modifying the color scheme 
To change the color scheme of this template go to 
the “Design” menu and click on “Colors”. You can 
choose from the provide color combinations or you 
can create your own. 
 
 
 
 

 
 

 

QUICK DESIGN GUIDE 
(--THIS SECTION DOES NOT PRINT--) 

 
This PowerPoint 2007 template produces a 36”x48” 
professional  poster. It will save you valuable time 
placing titles, subtitles, text, and graphics.  
 
Use it to create your presentation. Then send it to 
PosterPresentations.com for premium quality, same 
day affordable printing. 
 
We provide a series of online tutorials that will 
guide you through the poster design process and 
answer your poster production questions.  
 
View our online tutorials at: 
 http://bit.ly/Poster_creation_help  
(copy and paste the link into your web browser). 
 
For assistance and to order your printed poster call 
PosterPresentations.com at 1.866.649.3004 
 
 

Object Placeholders 
 

Use the placeholders provided below to add new 
elements to your poster: Drag a placeholder onto 
the poster area, size it, and click it to edit. 
 
Section Header placeholder 
Move this preformatted section header placeholder 
to the poster area to add another section header. 
Use section headers to separate topics or concepts 
within your presentation.  
 
 
 
Text placeholder 
Move this preformatted text placeholder to the 
poster to add a new body of text. 
 
 
 
 
Picture placeholder 
Move this graphic placeholder onto your poster, size 
it first, and then click it to add a picture to the 
poster. 
 
 
 

 
 
 
 

 
 

 

 

RESEARCH POSTER PRESENTATION DESIGN © 2012 

www.PosterPresentations.com 

©	  2012	  PosterPresenta.ons.com	  
	  	  	  	  2117	  Fourth	  Street	  ,	  Unit	  C	  
	  	  	  	  Berkeley	  CA	  94710	  
	  	  	  	  posterpresenter@gmail.com	  

Student discounts are available on our Facebook page. 
Go to PosterPresentations.com and click on the FB icon.  

•  Many computer vision algorithms assume that pixel values are linearly 
related to scene radiance. 

•  We often want to apply these algorithms to non-linear consumer images 
that are shared online. 
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Applica4on	  II:	  Probabilis4c	  photometric	  stereo	  

•  Most computer vision algorithms requires RAW images, while most 
available Internet images exists in narrow-gamut sRGB. 

•  We propose a de-rendering algorithm to recover physical color values 
from reported sRGB (JPEG) pixel values. 

•  The proposed model is probabilistic, embracing the multivalued nature 
of the de-rendering map. 

•  The output distribution can be used in probabilistic version of many 
tradition computer vision applications, such as de-blurring, de-hazing, 
color constancy, image-based modeling, object recognition, etc. 
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Problems: Consumer cameras render colors to make visually pleasing images 
for narrow-gamut displays. 
•  Physical accuracy is lost. 
•  Many-to-one mapping cannot be deterministically undone. 
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From	  Pixels	  to	  Physics:	  Probabilis.c	  Color	  De-‐rendering	  

Photometric	  stereo	  
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•  De-rendering: Inferring linear (RAW) values from non-linear (JPEG) ones. 
•  Use probabilistic models to account for information lost during color 

rendering. 
•  Probabilistic output can be directly applied in upstream applications. 
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Abstract

Consumer digital cameras use tone-mapping to produce

compact, narrow-gamut images that are nonetheless visu-

ally pleasing. In doing so, they discard or distort substantial

radiometric signal that could otherwise be used for com-

puter vision. Existing methods attempt to undo these ef-

fects through deterministic maps that de-render the reported

narrow-gamut colors back to their original wide-gamut sen-

sor measurements. Deterministic approaches are unreli-

able, however, because the reverse narrow-to-wide map-

ping is one-to-many and has inherent uncertainty. Our so-

lution is to use probabilistic maps, providing uncertainty

estimates useful to many applications. We use a non-

parametric Bayesian regression technique—local Gaussian

process regression—to learn for each pixel’s narrow-gamut

color a probability distribution over the scene colors that

could have created it. Using a variety of consumer cameras

we show that these distributions, once learned from train-

ing data, are effective in simple probabilistic adaptations of

two popular applications: multi-exposure imaging and pho-

tometric stereo. Our results on these applications are better

than those of corresponding deterministic approaches, es-

pecially for saturated and out-of-gamut colors.

1. Introduction
Most digital images produced by consumer cameras and

shared online exist in narrow-gamut, low-dynamic range

formats.
1

This is efficient for storage, transmission, and

display, but it is unfortunate for computer vision systems

that seek to interpret this data radiometrically when learn-

ing object appearance models for recognition, reconstruct-

ing scene models for virtual tourism, or performing other vi-

sual tasks with Internet images. Indeed, most computer vi-

sion algorithms are based, either implicitly or explicitly, on

the assumption that image measurements are proportional

to the spectral radiance of the scene (called scene color

hereafter), and when a consumer camera renders its digital

1
Typically sRGB color space with JPEG encoding: IEC 10918-1:1994

and IEC 61966-2-1:1999
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Figure 1. RAW and JPEG values for different exposures of the

same spectral scene radiance collected by a consumer digital cam-

era (DMC-LX3, Panasonic Inc.), along with normalized-RGB vi-

sualizations of the reported JPEG colors at a subset of exposures.

Apart from saturation, RAW values are linear in exposure and pro-

portional to spectral irradiance; but narrow-gamut JPEG values

are severely distorted by tone-mapping. Given only JPEG values,

what can we say about the unknown RAW values—and thus the

scene color—that induced it? How can we use all of the JPEG

color information, including when some JPEG channels are satu-

rated (regions A and C)? We answer these questions by providing

a confidence level for each RAW estimate (bottom plot), which

can be used for radiometry-based computer vision.

linear color measurements to a narrow-gamut output color

space (called rendered color hereafter), this proportionality

is almost always destroyed. Fig. 1 shows an example.

Existing approaches to color de-rendering attempt to

undo the effects of a camera’s color processing pipeline

through “radiometric calibration” [6, 20, 22], in which ren-

dered colors (i.e., those reported in a camera’s JPEG out-

1

put) are reverse-mapped to corresponding scene colors (i.e.,
those that would have been reported by the same cam-
era’s RAW output) using a learned deterministic function.
This approach is unreliable, because it ignores the inherent
uncertainty caused by the loss of information. A typical
camera renders many distinct sensor measurements to the
same small neighborhood of narrow-gamut output colors
(see Fig. 2, right2) and, once these output colors are quan-
tized, the reverse mapping becomes one-to-many in some
regions and cannot be deterministically undone.

How can we know which predictions are unreliable? As
supported by Fig. 2, one expects the one-to-many effect to
be greatest near the edges of the output gamut (i.e., near
zero or 255 in an 8-bit JPEG file), and practitioners try to
mitigate it using heuristics such as ignoring all JPEG pix-
els having values above or below certain thresholds in one
or more of their channels. This trick improves the relia-
bility of deterministic radiometric calibration, but it raises
the question of how to choose thresholds for a given cam-
era. (“Should I only discard pixels with values 0 or 255,
or should I be more conservative?”)3 A more fundamental
concern is that this heuristic works by discarding informa-
tion that would otherwise be useful. Referring to Fig. 1,
such a heuristic would ignore all JPEG measurements in re-
gions A and C, even though these clearly tell us something
about the latent scene color.

To overcome these limitations, we introduce a proba-
bilistic approach for de-rendering. This method produces
from each rendered (JPEG) color a probability distribution
over the (wide gamut, high dynamic range) scene colors that
could have induced it. The method relies on an offline cali-
bration procedure involving registered RAW and JPEG im-
age pairs, and from these it infers a statistical relationship
between rendered colors and scene colors using local Gaus-
sian process regression. This probabilistic approach pro-
vides a measure of confidence, base on the variance of the
output distribution, for every predicted scene color, thereby
eliminating the need for heuristic thresholds and making
better use of the scene radiance information that is embed-
ded in an Internet image. The offline calibration procedure
is required only once for each different imaging mode of
each camera, thus many per-camera de-rendering models
could be stored in an online database and accessed on de-
mand using camera model and mode information embedded
in the metadata of an Internet image.4

We evaluate our approach in a few different ways. First,

2The boundary of the output gamut is determined automatically from
image data in two steps. The edge directions of the parallelepiped are ex-
tracted from RAW metadata using dcraw[5], and then its scale is computed
as a robust fit to RAW-JPEG correspondences.

3Our experiments in Fig. 4 and those of [18] reveal significant variation
between models and suggest the answer is often the latter.

4As has been done for lens distortion by PTLens (accessed Mar 27,
2012): http://www.epaperpress.com/ptlens/
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Figure 2. 3D visualization of color rendering in a consumer cam-
era. The outer black cube shows the sensor (RAW) color space
of this camera, and the inner red parallelepiped shows the sRGB
color space in the rendered JPEG image. Left: Data from Fig. 1,
with black circles the scene color x at different exposure times.
Corresponding RAW values x̃ (magenta) are clipped due to sensor
saturation, and they are tone-mapped to rendered colors y (blue)
within the output sRGB gamut. Right: Rendered colors (blue) in
small neighborhoods of [127, 127, 127] and [253, 253, 253] in a
JPEG image, connected (through cyan lines) to their correspond-
ing RAW measurements (magenta).

we assess our ability to recover wide-gamut scene col-
ors from JPEG sRGB observations in four different con-
sumer cameras. Next, we employ our probabilistic de-
rendering model in relatively straightforward probabilistic
adaptations of two established applications: high-dynamic
range imaging with an exposure-stack of images (e.g., [20])
and three-dimensional reconstruction via Lambertian pho-
tometric stereo (e.g., [33]). In all cases, a probabilistic ap-
proach significantly improves our ability to infer radiomet-
ric scene structure from tone-mapped images.

1.1. Related work

There is a history of radiometric calibration for com-
puter vision, the goal of which is to invert non-linear trans-
formations of scene lightness and color that occur during
imaging. The most common approach is to assume that the
non-linearity can be described by a collection of three “ra-
diometric response functions”, which are monotonic deter-
ministic functions that separately affect the measurements
in each output color channel [20, 22, 6, 10]. The benefit
of this approach is that it enables “self-calibration” through
analysis of edge profiles [19] and image statistics [7, 16]
or, assuming white balance is fixed or happens per-channel
in the output color space [12], by making use of multiple
illuminations or exposures [20, 22, 6, 9, 28, 30]. For the
case of multiple exposures, Pal et al. [25] have proposed a
generalization that allows the shapes of the radiometric re-
sponse functions to change between exposures, while being
governed by statistical priors that give preference to smooth
and monotonic functions.

A significant limitation of the monotonic per-channel
model is that it cannot recover out-of-gamut chromaticities.
This can be explained using Fig. 2(left), which is a three-

Inverse	  (de-‐rendering)	  Model	  

JPEG	  :	  {	  yi	  }	  

RAW	  :	  {	  xi	  }	  

•  The inverse process is one-to-many: use Gaussian Process (GP) regression 
to produce a distribution instead of a single point estimate 

 
 
•  The input noise are non-stationary: use local GP regression 

they are clipped for longer exposures when the intensity
grows large. The rendered colors y = f(CW x̃) (blue)
lie within the output gamut, and are significantly affected
by the combined effects of sensor saturation, white balance,
and the color space transform. Interestingly, these rendered
colors are relatively far inside the boundary of the sRGB
gamut, so the conventional wisdom in radiometric calibra-
tion that one should discard pixels with very small or very
large JPEG values as being “clipped” is unlikely to detect
and properly treat them.

2.2. Inverse (de-rendering) model
Our goal is to infer, for each possible rendered color y,

the original scene color x that created it. As information is
lost in the forward rendering process, exact recovery is not
possible and thus any deterministic function that predicts a
single point estimate is bound to be wrong much of the time.
For that reason, we propose to estimate a distribution over
the space of possible scene colors. Specifically, we seek a
representation of p(x|y) from which we can either obtain a
MAP estimate of x or directly employ Bayesian inference
as desired for a given application (see Sec. 3.1 and Sec. 3.2).

We model the underlying de-rendering function, denoted
z, using Gaussian process (GP) regression [27]. Given a
training set {D = (yi,xi), i = 1, · · · , N}, composed
of inputs yi and noisy outputs xi, we model the outputs
{xc

i}c=R,G,B in each channel separately as coming from a
latent function zc that has a prior distribution described by
a GP, and is corrupted by additive noise �i:

xc
i = zc(yi) + �i, �i ∝ N (0,σ2

n). (1)

The latent function z serves as the inverse of the forward
rendering map composed of the color rendering function,
color transform, and white balance operations depicted in
Fig. 3. We will learn it using images in which the white
balance has been fixed to remove scene-dependence.

The classic GP regression paradigm uses a single set of
hyper-parameters controlling the smoothness of the inferred
function. However, our analysis of camera data has revealed
that such globally-defined (i.e., stationary) smoothness is
inadequate because there is significantly different behavior
in different regions of the sRGB gamut (see right of Fig. 2.)
Instead, the variance of z should be allowed to vary over
local neighborhoods of the sRGB color space.

Several extensions to the classic GP have been proposed
to model input-varying noise [23, 32, 21]. Here, we employ
a local GP regression model, which exploits the observa-
tion that, for compact radial covariance functions, only the
points close to a test point have significant influence on the
results [32]. Given a training dataset and a test point, the
method identifies a local neighborhood of the test point, and
performs prediction with the model either pre-trained based
on some local cluster (offline local GP), or learned on the fly

using neighbor points just detected (online local GP).5 More
specifically, given training set D and a test sRGB color y,
we infer a test distribution of RAW values x conditioned on
y by identifying a local neighborhood of y in D, denoted
DN(y), and computing

px(x|y) =
�

c

pGP (x
c|DN(y),y), (2)

where pGP (x|D,y) is the conditional GP likelihood of x
using training data D for sRGB colors y.

3. Working with photometric uncertainty
Linear measurements of scene radiance are crucial for

many computer vision tasks (shape from shading, image-
based rendering, deblurring, color constancy, intrinsic im-
ages, etc.), and the output of our de-rendering model can
be readily used in probabilistic approaches to these tasks.
Here we describe two such tasks and show how modeling
photometric uncertainty leads to more robust results.

3.1. Probabilistic wide-gamut imaging
Many applications that use Internet images operate by

inferring radiometric scene properties from multiple ob-
servations of the same scene point. For example, multi-
ple observations under different illuminations can be ex-
ploited for inferring diffuse object color [24] or more gen-
eral BRDFs [11]. To explore the benefits of modeling pho-
tometric uncertainty in such cases, we consider an example
scenario motivated by traditional HDR imaging with expo-
sure stacks [20, 6]. Given as input multiple exposures of
the same stationary scene, we seek to combine them into
one floating-point, HDR, and wide-gamut image.

Assume we are given a sequence of sRGB vectors cap-
tured at shutter speeds of {α1,α2, . . . ,αN} seconds. Rep-
resent these by {y1, . . . ,yN}. We would like to predict the
RAW color, x0 say, that would have been obtained with a
shutter speed of α0 seconds. Note that α0 need not be one
of the shutter speeds used to capture the sRGB input.

Given a training set D, for each sRGB value y we esti-
mate the conditional distributions pxi(xi|yi) for the RAW
value xi that would have been obtained with shutter speed
αi. Then, to obtain x0, we combine them using

px0(x0|y1, . . . ,yN ) =
�

i

px0(x0|yi)

=
�

i

αi

α0
pxi

�
αi

α0
x0|yi

�
. (3)

5To handle multimodality in the mapping, [32] shows how clustering
may be performed in both input and output spaces for the training data,
and a set of local regressors returned. However we believe that our inverse
map does not have multimodal structure, and we found that a single local
regressor provided adequate results. Implementation details with regard to
online and offline models are described in Sec. 4.
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they are clipped for longer exposures when the intensity
grows large. The rendered colors y = f(CW x̃) (blue)
lie within the output gamut, and are significantly affected
by the combined effects of sensor saturation, white balance,
and the color space transform. Interestingly, these rendered
colors are relatively far inside the boundary of the sRGB
gamut, so the conventional wisdom in radiometric calibra-
tion that one should discard pixels with very small or very
large JPEG values as being “clipped” is unlikely to detect
and properly treat them.

2.2. Inverse (de-rendering) model
Our goal is to infer, for each possible rendered color y,

the original scene color x that created it. As information is
lost in the forward rendering process, exact recovery is not
possible and thus any deterministic function that predicts a
single point estimate is bound to be wrong much of the time.
For that reason, we propose to estimate a distribution over
the space of possible scene colors. Specifically, we seek a
representation of p(x|y) from which we can either obtain a
MAP estimate of x or directly employ Bayesian inference
as desired for a given application (see Sec. 3.1 and Sec. 3.2).

We model the underlying de-rendering function, denoted
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training set {D = (yi,xi), i = 1, · · · , N}, composed
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latent function zc that has a prior distribution described by
a GP, and is corrupted by additive noise �i:

xc
i = zc(yi) + �i, �i ∝ N (0,σ2

n). (1)

The latent function z serves as the inverse of the forward
rendering map composed of the color rendering function,
color transform, and white balance operations depicted in
Fig. 3. We will learn it using images in which the white
balance has been fixed to remove scene-dependence.

The classic GP regression paradigm uses a single set of
hyper-parameters controlling the smoothness of the inferred
function. However, our analysis of camera data has revealed
that such globally-defined (i.e., stationary) smoothness is
inadequate because there is significantly different behavior
in different regions of the sRGB gamut (see right of Fig. 2.)
Instead, the variance of z should be allowed to vary over
local neighborhoods of the sRGB color space.

Several extensions to the classic GP have been proposed
to model input-varying noise [23, 32, 21]. Here, we employ
a local GP regression model, which exploits the observa-
tion that, for compact radial covariance functions, only the
points close to a test point have significant influence on the
results [32]. Given a training dataset and a test point, the
method identifies a local neighborhood of the test point, and
performs prediction with the model either pre-trained based
on some local cluster (offline local GP), or learned on the fly

using neighbor points just detected (online local GP).5 More
specifically, given training set D and a test sRGB color y,
we infer a test distribution of RAW values x conditioned on
y by identifying a local neighborhood of y in D, denoted
DN(y), and computing

px(x|y) =
�

c

pGP (x
c|DN(y),y), (2)

where pGP (x|D,y) is the conditional GP likelihood of x
using training data D for sRGB colors y.

3. Working with photometric uncertainty
Linear measurements of scene radiance are crucial for

many computer vision tasks (shape from shading, image-
based rendering, deblurring, color constancy, intrinsic im-
ages, etc.), and the output of our de-rendering model can
be readily used in probabilistic approaches to these tasks.
Here we describe two such tasks and show how modeling
photometric uncertainty leads to more robust results.

3.1. Probabilistic wide-gamut imaging
Many applications that use Internet images operate by

inferring radiometric scene properties from multiple ob-
servations of the same scene point. For example, multi-
ple observations under different illuminations can be ex-
ploited for inferring diffuse object color [24] or more gen-
eral BRDFs [11]. To explore the benefits of modeling pho-
tometric uncertainty in such cases, we consider an example
scenario motivated by traditional HDR imaging with expo-
sure stacks [20, 6]. Given as input multiple exposures of
the same stationary scene, we seek to combine them into
one floating-point, HDR, and wide-gamut image.

Assume we are given a sequence of sRGB vectors cap-
tured at shutter speeds of {α1,α2, . . . ,αN} seconds. Rep-
resent these by {y1, . . . ,yN}. We would like to predict the
RAW color, x0 say, that would have been obtained with a
shutter speed of α0 seconds. Note that α0 need not be one
of the shutter speeds used to capture the sRGB input.

Given a training set D, for each sRGB value y we esti-
mate the conditional distributions pxi(xi|yi) for the RAW
value xi that would have been obtained with shutter speed
αi. Then, to obtain x0, we combine them using

px0(x0|y1, . . . ,yN ) =
�

i

px0(x0|yi)

=
�

i

αi

α0
pxi

�
αi

α0
x0|yi

�
. (3)

5To handle multimodality in the mapping, [32] shows how clustering
may be performed in both input and output spaces for the training data,
and a set of local regressors returned. However we believe that our inverse
map does not have multimodal structure, and we found that a single local
regressor provided adequate results. Implementation details with regard to
online and offline models are described in Sec. 4.
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Figure 4. Wide-gamut imaging: Estimating wide-gamut linear
scene colors from a 22-image exposure sequences of sRGB JPEG
images. Plots show relative RMSE in predicted scene colors aver-
aged over 16 runs with input sequences of the same scene under
distinct illuminations. Horizontal axis reveals performance change
when reduced input JPEG intervals are selected using different
thresholds. Label GP (red) refers to our algorithm; Per-channel
(blue) refers to use of [3]; and RBF (black) is similar to [18].

4.3. Photometric Stereo
Finally, we evaluate our model in the context of proba-

bilistic Lambertian photometric stereo. We use the Canon
40D to collect JPEG images of a wooden sphere from a
fixed (approximately orthographic) viewpoint under direc-
tional lighting from twenty different known directions. We
apply the algorithm from Sec. 3.2 to estimate a surface nor-
mal for each pixel that back-projects to the sphere’s surface.
Since the shape of the surface can be determined from its

occluding contour in the orthographic image plane we can
compare our results directly to ground truth.

The angular error (degrees) in the estimated surface nor-
mal at each pixel is displayed in the left of Fig. 5. The
maximum likelihood estimates obtained with the proposed
GP model are more accurate than those estimated by the
baseline, in which JPEG values are deterministically de-
rendered via [3] prior to least-squares estimation of the sur-
face normals. The baseline method yields inaccurate esti-
mates of the surface normals when the JPEG images contain
near-saturated values. The third column shows the error that
results from a second baseline using gamma-inversed JPEG
values (a gamma parameter of 2.2 is assumed), and such er-
rors are much larger, as expected. Quantitively, the average
angular error of the proposed GP model is 3.41◦, for base-
line model the error is 4.54◦, and for gamma-inversed JPEG
the error is 8.92◦. The improved accuracy of the probabilis-
tic approach is also apparent in the right of Fig. 5, which
shows horizontal cross-sections of the depth-maps obtained
by integrating the normal fields using [8].

5. Conclusion
Most images captured and shared online are not in linear

(RAW) formats, but are instead in narrow-gamut (sRGB)
formats with colors that are severely distorted by cameras’
color rendering processes. In order for computer vision sys-
tems to maximally exploit the color information in these
images, they must first undo the color distortions as much
as possible. This paper advocates a probabilistic approach
to color de-rendering, one that embraces the multivalued na-
ture of the de-rendering map by providing for each rendered
sRGB color a distribution over the latent linear scene colors
that could have induced it. An advantage of this approach
is that it does not require discarding any image data using
ad-hoc thresholds. Instead, it allows making use of all ren-
dered color information by providing for each de-rendered
color a measure of its uncertainty.

Our experimental results suggest that a probabilistic rep-
resentation can be useful when combining per-image esti-
mates of linear scene color, and when recovering the shape
of Lambertian surfaces via photometry. The output of our
approach—a mean and variance over scene colors for each
sRGB image color—may have a practical impact for prob-
abilistic adaptations of various other computer vision tasks
(deblurring, dehazing, matching and stitching, color con-
stancy, image-based modeling, object recognition, etc.).
One direction worth exploring is the use of spatial structure
in the input sRGB image(s), such as edges and textures, to
further constrain the de-rendered scene colors. This is in
the spirit of [31], and it begs the question of how well a
full-gamut linear scene color image can be recovered from
a single tone-mapped sRGB one.
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Figure 4. Wide-gamut imaging: Estimating wide-gamut linear
scene colors from a 22-image exposure sequences of sRGB JPEG
images. Plots show relative RMSE in predicted scene colors aver-
aged over 16 runs with input sequences of the same scene under
distinct illuminations. Horizontal axis reveals performance change
when reduced input JPEG intervals are selected using different
thresholds. Label GP (red) refers to our algorithm; Per-channel
(blue) refers to use of [3]; and RBF (black) is similar to [18].

4.3. Photometric Stereo
Finally, we evaluate our model in the context of proba-

bilistic Lambertian photometric stereo. We use the Canon
40D to collect JPEG images of a wooden sphere from a
fixed (approximately orthographic) viewpoint under direc-
tional lighting from twenty different known directions. We
apply the algorithm from Sec. 3.2 to estimate a surface nor-
mal for each pixel that back-projects to the sphere’s surface.
Since the shape of the surface can be determined from its

occluding contour in the orthographic image plane we can
compare our results directly to ground truth.

The angular error (degrees) in the estimated surface nor-
mal at each pixel is displayed in the left of Fig. 5. The
maximum likelihood estimates obtained with the proposed
GP model are more accurate than those estimated by the
baseline, in which JPEG values are deterministically de-
rendered via [3] prior to least-squares estimation of the sur-
face normals. The baseline method yields inaccurate esti-
mates of the surface normals when the JPEG images contain
near-saturated values. The third column shows the error that
results from a second baseline using gamma-inversed JPEG
values (a gamma parameter of 2.2 is assumed), and such er-
rors are much larger, as expected. Quantitively, the average
angular error of the proposed GP model is 3.41◦, for base-
line model the error is 4.54◦, and for gamma-inversed JPEG
the error is 8.92◦. The improved accuracy of the probabilis-
tic approach is also apparent in the right of Fig. 5, which
shows horizontal cross-sections of the depth-maps obtained
by integrating the normal fields using [8].

5. Conclusion
Most images captured and shared online are not in linear

(RAW) formats, but are instead in narrow-gamut (sRGB)
formats with colors that are severely distorted by cameras’
color rendering processes. In order for computer vision sys-
tems to maximally exploit the color information in these
images, they must first undo the color distortions as much
as possible. This paper advocates a probabilistic approach
to color de-rendering, one that embraces the multivalued na-
ture of the de-rendering map by providing for each rendered
sRGB color a distribution over the latent linear scene colors
that could have induced it. An advantage of this approach
is that it does not require discarding any image data using
ad-hoc thresholds. Instead, it allows making use of all ren-
dered color information by providing for each de-rendered
color a measure of its uncertainty.

Our experimental results suggest that a probabilistic rep-
resentation can be useful when combining per-image esti-
mates of linear scene color, and when recovering the shape
of Lambertian surfaces via photometry. The output of our
approach—a mean and variance over scene colors for each
sRGB image color—may have a practical impact for prob-
abilistic adaptations of various other computer vision tasks
(deblurring, dehazing, matching and stitching, color con-
stancy, image-based modeling, object recognition, etc.).
One direction worth exploring is the use of spatial structure
in the input sRGB image(s), such as edges and textures, to
further constrain the de-rendered scene colors. This is in
the spirit of [31], and it begs the question of how well a
full-gamut linear scene color image can be recovered from
a single tone-mapped sRGB one.
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through surfaces obtained by integrating each set of surface normals, as compared to the ground truth shape.
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Since each channel pxi(xi|yi) is modeled by a Gaus-

sian process, this expression represents the product of

Gaussian distributions, so the conditional distribution

px0(x0|y1, . . . ,yN ) =
�

i px0(x0|yi) will be Gaussian as

well. Our output for x0, therefore, is the mean and variance

of this Gaussian distribution.

This application reveals the power of a probabilistic

model: it provides a distribution rather than a point esti-

mate. For applications that combine multiple independent

measurements, this provides a natural way to assign more

weight to the estimates that have smaller variance.

3.2. Probabilistic Lambertian photometric stereo

When illumination varies, another way that multiple ob-

servations of the same scene can be used is to recover light-

ing information and/or scene geometry. This may be useful

when using Internet images for weather recovery [29], ge-

ometric camera calibration [17], or 3D reconstruction [1].

To quantitatively assess the utility of uncertainty modeling

in these types of applications we consider the toy problem

of recovering from JPEG images three-dimensional scene

shape using Lambertian photometric stereo.

Lambertian photometric stereo is a technique for esti-

mating the surface normals of a Lambertian object by ob-

serving that object under different lighting conditions and a

fixed viewpoint [33]. Suppose there are N different direc-

tional lighting conditions, with li ∈ R3
the direction and

strength of the ith source. Consider a single color channel

of single pixel in the image plane; denote by Ii the linear
intensity recorded in that channel under the ith light direc-

tion; and let n ∈ S2 and ρ ∈ R+
be the normal direction

and the albedo of the surface patch at the back-projection of

this pixel. The Lambertian reflectance model provides the

relation ρ�li,n� = Ii, and the goal of photometric stereo is

to infer the material ρ and shape n given the set {li, Ii}.

Defining a pseudo-normal b � ρn, the relation between

the observed intensity and the scene parameters becomes

lTi b = Ii. (4)

Given three or more {li, Ii}-pairs, the traditional Lamber-

tian photometric stereo estimates pseudo-normal b (and

thus ρ and n) in a least-squares sense:

b = (LTL)−1LT I, (5)

where L and I are the matrix and vector formed by stacking

the light directions li and measurements Ii, respectively.

The linear relation between intensity I and scene radi-

ance is crucial in photometric stereo. One can use RAW

measurements when they are available, but for Internet-

based vision tasks that rely on sRGB images, one must first

de-render the colors to achieve this linearity. In our case, the

de-rendering result for each pixel is described as a Gaus-

sian random variable Ii ∼ N (µi,σ2
i ), and Eq. (4) can be

re-written as

lTi b = µi + σi�i, �i ∼ N (0, 1). (6)

From this it follows (e.g., [13]) that the maximum likeli-

hood estimate of the pseudo-normal b is obtained through

weighted least-squares, with weights given by the recipro-

cal of the variance. That is,

b = (LTWL)−1LTWµ, (7)

with W = diag{σ−2
i }Ni=1.

Once again we see that distributions provided by a proba-

bilistic de-rendering system can be employed very naturally

to selectively weight measurements for improved accuracy

and robustness.

4. Evaluation
For training, we collect for each camera model densely

sampled corresponding measurements of scene color and

rendered color. We obtain these by capturing a set of reg-

istered RAW and JPEG images of a standard color chart

(140-patch Digital ColorChecker SG, X-Rite Inc.). To ob-

tain a complete coverage of the RAW space, we use various

camera exposure settings (from all-black to all-white) and

various illumination spectra (a tungsten lamp sequentially

filtered by 16 distinct gels). This provides a very dense

set of RAW/JPEG pairs and more observations of saturated

colors than is available in existing databases [3, 18]. We

average the RAW and JPEG pixel values within each of the

140 color patches in each image to thoroughly suppress the

effects of demosaicking, noise, and compression, and all in

all, we obtain between 30,000 and 50,000 RAW/JPEG color

pairs {x̃i,yi} for each camera.

Scene colors x are obtained from RAW values x̃ us-

ing dcraw [5] for demosaicking without white balance or

a color space transform, which produces 16-bit uncom-

pressed color images in the color space defined by the cam-

era’s spectral filters. RAW values corresponding to satu-

rated sensor measurements are discarded and replaced by

estimates of scene color x extrapolated from RAW mea-

surements by the same camera under the same illuminant

but with lower camera exposure settings.

Three of the cameras—two point-and-shoot models

(Canon Powershot S90; Panasonic DMC-LX3) and a digital

SLR (Canon EOS 40D)—provide simultaneous RAW and

JPEG output, allowing training from each of these camera’s

data on its own. We also evaluate a fourth camera (Fuji

FinePix J10) that provides only JPEG output, and for this

we use one of the RAW-capable cameras (the Panasonic) as

a proxy to collect the registered RAW images.

For GP regression we use the GPML toolkit.
6

We im-

6
Available online at http://www.gaussianprocess.org/gpml/.

Since each channel pxi(xi|yi) is modeled by a Gaus-

sian process, this expression represents the product of

Gaussian distributions, so the conditional distribution

px0(x0|y1, . . . ,yN ) =
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i px0(x0|yi) will be Gaussian as

well. Our output for x0, therefore, is the mean and variance

of this Gaussian distribution.

This application reveals the power of a probabilistic

model: it provides a distribution rather than a point esti-

mate. For applications that combine multiple independent

measurements, this provides a natural way to assign more

weight to the estimates that have smaller variance.

3.2. Probabilistic Lambertian photometric stereo

When illumination varies, another way that multiple ob-

servations of the same scene can be used is to recover light-

ing information and/or scene geometry. This may be useful

when using Internet images for weather recovery [29], ge-

ometric camera calibration [17], or 3D reconstruction [1].

To quantitatively assess the utility of uncertainty modeling

in these types of applications we consider the toy problem

of recovering from JPEG images three-dimensional scene

shape using Lambertian photometric stereo.

Lambertian photometric stereo is a technique for esti-

mating the surface normals of a Lambertian object by ob-

serving that object under different lighting conditions and a

fixed viewpoint [33]. Suppose there are N different direc-

tional lighting conditions, with li ∈ R3
the direction and

strength of the ith source. Consider a single color channel

of single pixel in the image plane; denote by Ii the linear
intensity recorded in that channel under the ith light direc-
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be the normal direction

and the albedo of the surface patch at the back-projection of
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to infer the material ρ and shape n given the set {li, Ii}.

Defining a pseudo-normal b � ρn, the relation between

the observed intensity and the scene parameters becomes
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thus ρ and n) in a least-squares sense:

b = (LTL)−1LT I, (5)

where L and I are the matrix and vector formed by stacking

the light directions li and measurements Ii, respectively.

The linear relation between intensity I and scene radi-

ance is crucial in photometric stereo. One can use RAW

measurements when they are available, but for Internet-

based vision tasks that rely on sRGB images, one must first

de-render the colors to achieve this linearity. In our case, the

de-rendering result for each pixel is described as a Gaus-

sian random variable Ii ∼ N (µi,σ2
i ), and Eq. (4) can be

re-written as

lTi b = µi + σi�i, �i ∼ N (0, 1). (6)
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weighted least-squares, with weights given by the recipro-

cal of the variance. That is,
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Once again we see that distributions provided by a proba-

bilistic de-rendering system can be employed very naturally

to selectively weight measurements for improved accuracy
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4. Evaluation
For training, we collect for each camera model densely

sampled corresponding measurements of scene color and

rendered color. We obtain these by capturing a set of reg-

istered RAW and JPEG images of a standard color chart

(140-patch Digital ColorChecker SG, X-Rite Inc.). To ob-

tain a complete coverage of the RAW space, we use various

camera exposure settings (from all-black to all-white) and

various illumination spectra (a tungsten lamp sequentially

filtered by 16 distinct gels). This provides a very dense
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effects of demosaicking, noise, and compression, and all in

all, we obtain between 30,000 and 50,000 RAW/JPEG color
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ing dcraw [5] for demosaicking without white balance or

a color space transform, which produces 16-bit uncom-

pressed color images in the color space defined by the cam-

era’s spectral filters. RAW values corresponding to satu-

rated sensor measurements are discarded and replaced by

estimates of scene color x extrapolated from RAW mea-

surements by the same camera under the same illuminant

but with lower camera exposure settings.

Three of the cameras—two point-and-shoot models

(Canon Powershot S90; Panasonic DMC-LX3) and a digital

SLR (Canon EOS 40D)—provide simultaneous RAW and

JPEG output, allowing training from each of these camera’s

data on its own. We also evaluate a fourth camera (Fuji

FinePix J10) that provides only JPEG output, and for this

we use one of the RAW-capable cameras (the Panasonic) as

a proxy to collect the registered RAW images.

For GP regression we use the GPML toolkit.
6

We im-

6
Available online at http://www.gaussianprocess.org/gpml/.

Since each channel pxi(xi|yi) is modeled by a Gaus-
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px0(x0|y1, . . . ,yN ) =
�

i px0(x0|yi) will be Gaussian as
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This application reveals the power of a probabilistic
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ometric camera calibration [17], or 3D reconstruction [1].
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shape using Lambertian photometric stereo.
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fixed viewpoint [33]. Suppose there are N different direc-

tional lighting conditions, with li ∈ R3
the direction and

strength of the ith source. Consider a single color channel

of single pixel in the image plane; denote by Ii the linear
intensity recorded in that channel under the ith light direc-

tion; and let n ∈ S2 and ρ ∈ R+
be the normal direction

and the albedo of the surface patch at the back-projection of

this pixel. The Lambertian reflectance model provides the

relation ρ�li,n� = Ii, and the goal of photometric stereo is

to infer the material ρ and shape n given the set {li, Ii}.

Defining a pseudo-normal b � ρn, the relation between
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lTi b = Ii. (4)

Given three or more {li, Ii}-pairs, the traditional Lamber-

tian photometric stereo estimates pseudo-normal b (and

thus ρ and n) in a least-squares sense:

b = (LTL)−1LT I, (5)

where L and I are the matrix and vector formed by stacking

the light directions li and measurements Ii, respectively.

The linear relation between intensity I and scene radi-

ance is crucial in photometric stereo. One can use RAW

measurements when they are available, but for Internet-

based vision tasks that rely on sRGB images, one must first

de-render the colors to achieve this linearity. In our case, the

de-rendering result for each pixel is described as a Gaus-

sian random variable Ii ∼ N (µi,σ2
i ), and Eq. (4) can be

re-written as

lTi b = µi + σi�i, �i ∼ N (0, 1). (6)

From this it follows (e.g., [13]) that the maximum likeli-

hood estimate of the pseudo-normal b is obtained through

weighted least-squares, with weights given by the recipro-

cal of the variance. That is,

b = (LTWL)−1LTWµ, (7)

with W = diag{σ−2
i }Ni=1.

Once again we see that distributions provided by a proba-

bilistic de-rendering system can be employed very naturally

to selectively weight measurements for improved accuracy

and robustness.

4. Evaluation
For training, we collect for each camera model densely

sampled corresponding measurements of scene color and

rendered color. We obtain these by capturing a set of reg-

istered RAW and JPEG images of a standard color chart

(140-patch Digital ColorChecker SG, X-Rite Inc.). To ob-

tain a complete coverage of the RAW space, we use various

camera exposure settings (from all-black to all-white) and

various illumination spectra (a tungsten lamp sequentially

filtered by 16 distinct gels). This provides a very dense

set of RAW/JPEG pairs and more observations of saturated

colors than is available in existing databases [3, 18]. We

average the RAW and JPEG pixel values within each of the

140 color patches in each image to thoroughly suppress the

effects of demosaicking, noise, and compression, and all in

all, we obtain between 30,000 and 50,000 RAW/JPEG color

pairs {x̃i,yi} for each camera.

Scene colors x are obtained from RAW values x̃ us-

ing dcraw [5] for demosaicking without white balance or

a color space transform, which produces 16-bit uncom-

pressed color images in the color space defined by the cam-

era’s spectral filters. RAW values corresponding to satu-

rated sensor measurements are discarded and replaced by

estimates of scene color x extrapolated from RAW mea-

surements by the same camera under the same illuminant

but with lower camera exposure settings.

Three of the cameras—two point-and-shoot models

(Canon Powershot S90; Panasonic DMC-LX3) and a digital

SLR (Canon EOS 40D)—provide simultaneous RAW and

JPEG output, allowing training from each of these camera’s

data on its own. We also evaluate a fourth camera (Fuji

FinePix J10) that provides only JPEG output, and for this

we use one of the RAW-capable cameras (the Panasonic) as

a proxy to collect the registered RAW images.

For GP regression we use the GPML toolkit.
6

We im-
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Figure 2. A new radiometric model: the color (gamut) mapping

process h [9] is added to overcome the limitation of the conven-

tional model.

camera. We took multiple shots of each image to deal with

the instability of the shutter speeds.

The outliers mentioned in Section 4 also need to be ad-

dressed for the accurate radiometric calibration. In some

cameras and scenes, the number of outliers is small and the

effect of outliers on the estimation of the response curve is

minimal. However, we have found that the outliers can have

a serious effect in some cameras and scenes, so the outliers

need to be detected and discarded from the response estima-

tion. First, points with 0 or 255 in any of the channels are

rejected as outliers. Next, we use the color saturation value

to detect the points that lie close to the boundary of the color

gamut. We convert RGB to HSV, and points with saturation

over a threshold (β) are considered to be outliers. Sugges-

tions on how to best select β to remove outliers is described

in Section 7. In the following Section, we describe a cali-

bration scheme to deal with these outliers by modeling the

color mapping component of the in-camera processing.

6. Image to Irradiance (RAW)
It was shown in Section 4 that the existing radiometric

model (Eq. 1) cannot represent the nonlinear color mapping

(gamut mapping) effectively by simply having a different

response function per color channel. Therefore, points with

high color saturation cannot be mapped back to physical

values as well as neutral colors. To overcome the limita-

tion of the conventional model in Eq. 1, we introduce a new

radiometric imaging model as follows:

icx = fc(h(TEx)), (9)

where c represents the color channel, f is the conven-

tional radiometric response function responsible for the

tone-compression, h:R3 → R3
is the color mapping func-

tion, T is a 3 × 3 matrix which includes the white balance

and the transformation from camera color space to linear

sRGB, and Ex is the irradiance (RAW). Fig. 2 shows a di-

agram of this radiometric model including the color map-

ping.

Because the nonlinear color mapping process h is spe-

cific to each camera manufacturer and can be drastically

different, it is difficult to design a parametric model for this

process. Instead, we use scatter point interpolation via ra-

dial basis functions (RBF) to estimate this nonlinear map-

ping as:

h−1(e) =
N�

i=1

wi �e− ei�2 , (10)

where e represents a linearized sRGB color point and ei
represents a RBF control point. The weights (wi) are com-

puted from a set of selected sRGB-RAW control point pairs

in the form of ei → TEi, where the TEi is the correspond-

ing RAW value that has been corrected by T. For more in-

formation on RBF, readers are referred to [1]. This inverse

color mapping h−1(e) is essentially a 3D warping that re-

verses the gamut mapping process which enables more ac-

curate reconstruction of a RAW image from a given sRGB

image.

We pre-calibrate the functions f−1
c and h−1

per cam-

era and the transformation T per white balance setting.

The response functions (f−1
c ) are computed as described

in Section 5 using a number of differently exposed im-

ages. With the response function computed, the transfor-

mation T is then computed using Eq. 4 from a number

of sRGB-RAW pairs. Finally, the color mapping function

(h−1
) which should map the linearized image values to the

RAW values transformed by T is computed from a num-

ber of sRGB-RAW pairs with various white balance set-

tings (typically 1500 samples are used to define h−1
). After

the pre-calibration, a new image which is in the non-linear

sRGB space can be mapped to the RAW by




Erx

Egx

Ebx



 = T−1 · h−1








f−1
r (irx)

f−1
g (igx)
f−1

b (ibx)







 . (11)

7. Experiments
Radiometric response function estimation. We first com-

pare the performance of the practical algorithm (Section 5)

against the conventional approach [5] upon which we have

built our algorithm. Fig. 3 shows an example of the out-

liers detected by our algorithm and the response functions

recovered by the two methods. There is a significant differ-

ence in the estimations and the proposed algorithm clearly

outperforms on the linearization results.

A selected few response functions computed using our

algorithm for some cameras in our database are shown in

Fig. 4. Note that the responses differ from the gamma curve

(γ = 2.2) commonly used for linearization in some color

[Lin	  et	  al.,	  2011]	  
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Figure 5: Iteration 0,1, and 6 (the final iteration) of the al-
gorithm.

irradiance is available, it is easy to adapt our algorithm by
assigning certain irradiance values to their known quanti-
ties. Thus, in some situations it may be desirable to perform
color channel adjustments on the final HDR image. As fu-
ture work, it is possible to incorporate chromaticity priors
that could couple the estimation of curves across the color
channels. Such priors could improve our estimation proce-
dure by making the chromaticity of the final HDR irradiance
estimates as close as possible to the chromaticity of unsatu-
rated or low uncertainty pixels across the different images.
It would also be useful to investigate how information con-
cerning camera setting information would be formulated in
the context of our prior structures so as to benefit the esti-
mated imaging functions.
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the finite span
PM

n¼1 cnhlog;nðEÞ in log-space becomesQM
n¼1ðehlog;nðEÞÞcn in the space of response functions. This gives

an M-parameter approximation space, with c1; . . . cM being
the parameters of the model. If the basis is chosen so
hlog;1ðEÞ ¼ E, then the one parameter approximation is the
family of gamma functions.

In both approaches, an approximation is determined by a
choice of basis in W0 or in Wlog: For example, in [26], the
polynomial basis presented is a special case of the above
simpler approach of parameterizing W0; to approximate
WRF: If we instead use a finite-dimensional discrete
approximation of log-space by sampling at integer gray-
levels and let the basis hlog;n be delta functions at those gray-
levels, this specializes to the method used in [6].

In our notation in (2), the polynomial model is obtained
using f0ðEÞ :¼ E and hnðEÞ :¼ Enþ1 % E: One can also
obtain a trigonometric approximation model by using
f0ðEÞ :¼ E and the half-sine basis hnðEÞ :¼ sinðn!EÞ.
Clearly, there are many more choices. Thus, while the
description of WRF in Section 2 in terms of W0 and f0 has
suggested the general form of an approximation model, it
has not given us criteria to decide which basis of W0 to use.
The efficiency of any basis depends on how close the
responses of actual imaging systems are to the space
spanned by the first few basis elements. Hence, a natural
approach is to use the response curves of real-world
imaging systems to determine the appropriate basis for
the approximation model.

4 REAL-WORLD RESPONSE FUNCTIONS

We collected a diverse set of response curves in order to
cover the range of curves found in complete imaging
systems. Examples of such systems include video cameras
with capture cards and digitally scanned photographs. We
collected response curves for a wide variety of CCD
sensors, digital cameras (detector + electronics), and
photographic films. The response curves for photographic
film remain important even as the use of film declines. The
film response curves have been designed to produce
attractive images. Digital cameras often emulate these
curves.

Companies such as Kodak, Agfa, and Fuji have
published response curves for some of their films on their
Web sites. The curves we gathered include representatives
from positive and negative films, consumer and profes-
sional films, still and motion picture films, in both color as
well as black and white. We treated the three response
curves for color films as three different responses. We also
included curves of the same film type but different ASA
speeds. For some of the black and white films (for example,
Agfa Scala 200), the response curves for different develop-
ing times were available and so included. Examples of film
brands we included are Agfacolor Future, Auxochrome RX-
II, Fuji F125, Fuji FDIC, Kodak Advanced, Kodak Gold, and
Monochrome.

We also obtained response curves for several CCD
sensors, in particular, Kodak’s KAI and KAF series. In the
case of digital cameras, the manufacturers we contacted
were unwilling to provide the responses of their cameras.
However, Mitsunaga and Nayar have measured the
responses of a variety of digital and video cameras,
including the Sony DC 950 and the Canon Optura using
their algorithm RASCAL [26]. These curves were included.
Many camera manufacturers design the response to be a
gamma curve. Therefore, we included a few gamma curves,
chosen from the range 0:2 & " & 2:8, in our database.
Currently, the database contains a total of 201 curves, a
few of which are shown in Fig. 3.

The companies provided the curves for film and CCDs in
an assortment of formats. We first converted all the plotted
curves to high-resolution images. We manually removed all
extraneous information from these images. After removal of
this information, some of the curves had gaps. To
interpolate through these gaps, as well as to remove any
effects of rasterization, we applied a local linear regression
to the curves.

As we discussed in Section 2, we assume that response
curves are monotonic. For this reason, the 201 response
curves we chose were all monotonic. The few nonmono-
tonic ones we came across were disregarded. In the case of
negative film, we transformed the curves to make them
monotonically increasing rather than monotonically de-
creasing. Many of the film curves we collected were
originally published on log-linear or log-log scales. All
curves were converted to linear-linear scale in response and
irradiance. Those curves that were not originally provided

GROSSBERG AND NAYAR: MODELING THE SPACE OF CAMERA RESPONSE FUNCTIONS 1275

Fig. 3. Examples from our database of 201 real-world response functions (DoRF). The database includes photographic films, digital cameras, CCDs,
and synthetic gamma curves. Note that even within a single brand of film, for example, Agfa, there is considerable variation between response curves.
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Figure 4: Results for the independent polynomial RAW→JPEG map estimation: On the right, bar

graph showing mean RMSE values for each camera (with inset red bar showing mean noise standard

deviation). On the left, joint histograms of yi and [C · κ]i for images from five different cameras, with

the estimated gi super-imposed in white.

a very wide gamut (much larger than that of any one natural scene), these tests help best

evaluate the model’s ability to represent the camera’s processing pipeline. Figure 4 summa-

rizes the results of applying the model to the color checker images from all 24 cameras with

RAW support, across different illuminants, and white balance and exposure settings. Joint

histograms showing the nonlinear relationship between [C ·κ]i and yi are included for five of

the cameras, along with the estimated degree-5 polynomial gi(·) that best approximates this

map. It is clear from these histograms that the nonlinear maps are camera dependent, and for

cameras, channel dependent. Also, in most cases these maps are well approximated by the

independent polynomial model.

5 Analysis and discussion
Our findings suggest the following. First, when it is available, the RAW output of most

cameras is proportional to image irradiance. We tested 24 different RAW-capable cameras

and for all of them, the deviation from linearity is at the same scale as sensor noise. Second,

the mapping from (demosaiced) RAW color three-vectors to colorimetric tristimulus values

(CIE XYZ) can often be represented by a general linear 3×3 transform even when (limited)

changes in the illuminant spectrum occur. For all of the RAW-capable three-sensor cameras

in our database, we found that a 3× 3 transform yields errors less than three times larger

than the sensor noise. Third and finally, a twenty-four parameter model, consisting of a

general linear 3× 3 color transform and a per-channel 5th-degree polynomial, is able to

represent the nonlinear color processing pipelines of a large number of consumer cameras.

We recommend this representation as providing a good balance between accuracy and model

complexity, and we invite the research community to explore alternatives using our database

at http://vision.middlebury.edu/color/.
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–  permits online "self calibration” 
–  cannot recover out-of-gamut chromaticities 

The rendering pipeline of a common customer digital camera: 
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Non-linear and even non-monotonic effect for out-of-gamut chromaticities. 
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Gehler et al. (and many, many others): Given a single image, remove the color cast caused by 
the spectrum of the dominant scene illuminant

Sunkavalli et al: Given a time lapse sequence of a (radiometrically-calibrated) outdoor 
webcam, use the lighting variation over time to estimate the intrinsic color and detect sun’s 
cast shadows (two types of “intrinsic images”)

Whyte et al.: Given a blurry image with saturated pixels, de-blur the image. Assumes that the 
camera is radiometrically calibrated and uses an arbitrary hard threshold to decide what is 
saturated and what is not.
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