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Abstract

Consumer digital cameras use tone-mapping to produce
compact, narrow-gamut images that are nonetheless visu-
ally pleasing. In doing so, they discard or distort substantial
radiometric signal that could otherwise be used for com-
puter vision. Existing methods attempt to undo these ef-
fects through deterministic maps that de-render the reported
narrow-gamut colors back to their original wide-gamut sen-
sor measurements. Deterministic approaches are unreli-
able, however, because the reverse narrow-to-wide map-
ping is one-to-many and has inherent uncertainty. Our so-
lution is to use probabilistic maps, providing uncertainty
estimates useful to many applications. We use a non-
parametric Bayesian regression technique—local Gaussian
process regression—to learn for each pixel’s narrow-gamut
color a probability distribution over the scene colors that
could have created it. Using a variety of consumer cameras
we show that these distributions, once learned from train-
ing data, are effective in simple probabilistic adaptations of
two popular applications: multi-exposure imaging and pho-
tometric stereo. Our results on these applications are better
than those of corresponding deterministic approaches, es-
pecially for saturated and out-of-gamut colors.

1. Introduction
Most digital images produced by consumer cameras and

shared online exist in narrow-gamut, low-dynamic range
formats.1 This is efficient for storage, transmission, and
display, but it is unfortunate for computer vision systems
that seek to interpret this data radiometrically when learn-
ing object appearance models for recognition, reconstruct-
ing scene models for virtual tourism, or performing other vi-
sual tasks with Internet images. Indeed, most computer vi-
sion algorithms are based, either implicitly or explicitly, on
the assumption that image measurements are proportional
to the spectral radiance of the scene (called scene color
hereafter), and when a consumer camera renders its digital

1Typically sRGB color space with JPEG encoding: IEC 10918-1:1994
and IEC 61966-2-1:1999
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Figure 1. RAW and JPEG values for different exposures of the
same spectral scene radiance collected by a consumer digital cam-
era (DMC-LX3, Panasonic Inc.), along with normalized-RGB vi-
sualizations of the reported JPEG colors at a subset of exposures.
Apart from sensor saturation, RAW values are linear in exposure
and proportional to spectral irradiance; but narrow-gamut JPEG
values are severely distorted by tone-mapping. Given only JPEG
values, what can we say about the unknown RAW values—and
thus the scene color—that induced it? How can we use all of the
JPEG color information, including when some JPEG channels are
saturated (regions A and C)? We answer these questions by pro-
viding a confidence level for each RAW estimate (bottom plot),
which can be used for radiometry-based computer vision.

linear color measurements to a narrow-gamut output color
space (called rendered color hereafter), this proportionality
is almost always destroyed. Fig. 1 shows an example.

Existing approaches to color de-rendering attempt to
undo the effects of a camera’s color processing pipeline
through “radiometric calibration” [6, 20, 22], in which ren-
dered colors (i.e., those reported in a camera’s JPEG out-
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put) are reverse-mapped to corresponding scene colors (i.e.,
those that would have been reported by the same cam-
era’s RAW output) using a learned deterministic function.
This approach is unreliable, because it ignores the inherent
uncertainty caused by the loss of information. A typical
camera renders many distinct sensor measurements to the
same small neighborhood of narrow-gamut output colors
(see Fig. 2, right) and, once these output colors are quan-
tized, the reverse mapping becomes one-to-many in some
regions and cannot be deterministically undone.

How can we know which predictions are unreliable? As
supported by Fig. 2, one expects the one-to-many effect to
be greatest near the edges of the output gamut (i.e., near
zero or 255 in an 8-bit JPEG file), and practitioners try to
mitigate it using heuristics such as ignoring all JPEG pix-
els having values above or below certain thresholds in one
or more of their channels. This trick improves the relia-
bility of deterministic radiometric calibration, but it raises
the question of how to choose thresholds for a given cam-
era. (“Should I only discard pixels with values 0 or 255,
or should I be more conservative?”)2 A more fundamental
concern is that this heuristic works by discarding informa-
tion that would otherwise be useful. Referring to Fig. 1,
such a heuristic would ignore all JPEG measurements in re-
gions A and C, even though these clearly tell us something
about the latent scene color.

To overcome these limitations, we introduce a proba-
bilistic approach for de-rendering. This method produces
from each rendered (JPEG) color a probability distribution
over the (wide gamut, high dynamic range) scene colors
that could have induced it. The method relies on an offline
calibration procedure involving registered RAW and JPEG
image pairs, and from these it infers a statistical relation-
ship between rendered colors and scene colors using local
Gaussian process regression. This probabilistic approach
provides a measure of confidence, based on the variance
of the output distribution, for every predicted scene color,
thereby eliminating the need for heuristic thresholds and
making better use of the scene radiance information that
is embedded in an Internet image. The offline calibration
procedure is required only once for each different imaging
mode of each camera, thus many per-camera de-rendering
models could be stored in an online database and accessed
on demand using camera model and mode information em-
bedded in the metadata of an Internet image.3

We evaluate our approach in a few different ways. First,

2Our experiments in Fig. 4 and those of [18] reveal significant variation
between models and suggest the answer is often the latter.

3As has been done for lens distortion by PTLens (accessed Mar 27,
2012): http://www.epaperpress.com/ptlens/

4The boundary of the output sRGB gamut is determined automatically
from image data in two steps. The edge directions of the parallelepiped
are extracted from RAW metadata using dcraw[5], and then its scale is
computed as a robust fit to RAW-JPEG correspondences.
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Figure 2. 3D visualization of color rendering. The black cube in-
dicates the set of possible RAW color sensor measurements, and
the red parallelepiped shows the boundary of the output sRGB
gamut to which all RAW colors must be tone-mapped.4Left: Data
from Fig. 1, with black circles the scene color x at different expo-
sure times. Corresponding RAW values x̃ (magenta) are clipped
due to sensor saturation, and they are tone-mapped to rendered
colors y (blue) within the output sRGB gamut. Right: Ren-
dered colors (blue) in small neighborhoods of [127, 127, 127] and
[253, 253, 253] in a JPEG image, connected (through cyan lines)
to their corresponding RAW measurements (magenta).

we assess our ability to recover wide-gamut scene col-
ors from JPEG sRGB observations in four different con-
sumer cameras. Next, we employ our probabilistic de-
rendering model in relatively straightforward probabilistic
adaptations of two established applications: high-dynamic
range imaging with an exposure-stack of images (e.g., [20])
and three-dimensional reconstruction via Lambertian pho-
tometric stereo (e.g., [33]). In all cases, a probabilistic ap-
proach significantly improves our ability to infer radiomet-
ric scene structure from tone-mapped images.

1.1. Related work

There is a history of radiometric calibration for com-
puter vision, the goal of which is to invert non-linear trans-
formations of scene lightness and color that occur during
imaging. The most common approach is to assume that the
non-linearity can be described by a collection of three “ra-
diometric response functions”, which are monotonic deter-
ministic functions that separately affect the measurements
in each output color channel [20, 22, 6, 10]. The benefit
of this approach is that it enables “self-calibration” through
analysis of edge profiles [19] and image statistics [7, 16]
or, assuming white balance is fixed or happens per-channel
in the output color space [12], by making use of multiple
illuminations or exposures [20, 22, 6, 9, 28, 30]. For the
case of multiple exposures, Pal et al. [24] have proposed a
generalization that allows the shapes of the radiometric re-
sponse functions to change between exposures, while being
governed by statistical priors that give preference to smooth
and monotonic functions.

A significant limitation of the monotonic per-channel
model is that it cannot recover out-of-gamut chromaticities.
This can be explained using Fig. 2(left), which is a three-

http://www.epaperpress.com/ptlens/


dimensional visualization of Fig. 1. When an out-of-gamut
scene color x = (xR, xG, xB) is rendered to a within-
gamut output color y = (yR, yG, yB), the traditional per-
channel approach attempts to undo it by computing the es-
timate x̂ = {f c(yc)}c=R,G,B using positive-valued, mono-
tonic functions f c(·). This estimate cannot always be accu-
rate because it is restricted to lie within the cone defined by
the radial extension of the output sRGB gamut.

Chakrabarti et al. [3] show that more accurate determin-
istic models can be fit using an offline calibration procedure
involving registered RAW and JPEG sRGB images. They
consider multivariate polynomial models for the forward
map from scene color x to output color y, and while they
find reasonable fits for most cameras, the residual errors re-
main quite high at 4-6 times most camera noise levels. Lin
et al. [18] perform a thorough, larger-scale study and ob-
tain significantly improved fits using radial basis functions,
which are more flexible. Both approaches avoid the restric-
tions of per-channel response functions and can theoreti-
cally recover out-of-gamut chromaticities; but they remain
deterministic, reporting a single color value instead of a dis-
tribution and not allowing for uncertainty prediction.

We represent uncertainty by employing a Bayesian non-
parametric regression scheme, which allows the data to de-
termine the form of the mapping. Specifically, we adapt
the method of Urtasun and Darrell [32], which learns a lo-
cal Gaussian process for the neighborhood around each test
point, in the spirit of locally-weighted regression [4].

2. A probabilistic de-rendering model
We begin with a model for the forward color process-

ing pipeline of a typical consumer digital camera; then we
describe our representation for the reverse mapping. Both
models ignore de-mosaicking, flare removal, noise removal,
and sharpening since these have significantly less impact on
the output than non-linear tone-mapping. More details on
these secondary issues can be found elsewhere [3, 2, 25, 14].

An important assumption underlying our model is that
the forward rendering operation is spatially-uniform, mean-
ing that its effect on a RAW color vector is the same regard-
less of where it occurs on the image plane. This assump-
tion is shared by almost all de-rendering techniques and is
reasonable at present; but if spatially-varying tone-mapping
operators become more common, relaxing this assumption
may become a useful direction for future work.

2.1. Forward (rendering) model

Referring to Fig. 3, the forward model begins with
three idealized spectral sensors with sensitivity profiles
{πc(λ)}c=R,G,B that sample the spectral irradiance inci-
dent on the sensor plane. These sensors are idealized in
that they do not saturate and have infinite dynamic range,
and we refer to their output x = {xc}c=R,G,B as the scene
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Figure 3. The forward color processing model used in this paper,
along with our notation for it. Lesser effects, such as flare removal,
de-mosaicking, and vignetting are ignored and treated as noise.

color. Practical sensors have limited dynamic range, so
scene colors are clipped as they are recorded. In some con-
sumer cameras these recorded sensor measurements x̃ =
{x̃c}c=R,G,B are made available through a RAW output
format, and in others they only exist internally. Empirical
studies suggest that the RAW values (in the absence of clip-
ping) are proportional to incident irradiance and related by
a linear transform to measurements that would be obtained
by the CIE standard observer [3, 2, 15] (also see Fig. 1).
For this reason, they provide a “relative scene-referred im-
age” [12] and can be used directly by computer vision sys-
tems to reason about spectral irradiance.

Two linear transforms are applied to the sensor measure-
ments. The first (W ) is scene-dependent and induces white
balance, and the second (C) is a fixed transformation to
an internal working color space. Then, most importantly,
the linearly transformed RAW values CW x̃ are rendered
to colors y = {yc}c=R,G,B in the narrow-gamut output
sRGB color space through a non-linear map f : R3 → R3.
This map has evolved to produce visually-pleasing results
at the expense of physical accuracy, and since the qual-
ity of a camera’s color rendering process plays a signifi-
cant role in determining its commercial value, there is a
dis-incentive for manufacturers to share its details. In our
model, the map f includes the per-channel non-linearity
(approximately a gamma of 2.2) that is part of the sRGB
standard (IEC 61966-2-1:1999).

The left of Fig. 2 shows signal values at various stages
of this forward model for a consumer camera (DMC-LX3,
Panasonic Inc.). Recall that the black box in this plot repre-
sents the range of possible RAW values x̃, and the red par-
allelepiped marks the boundary of the output sRGB gamut.
The plot shows color signals produced using different ex-
posure times for a simple static scene consisting of a uni-
form planar patch under constant illumination, with spatial-
averaging over all patch pixels to thoroughly suppress the
effects of noise, demosaicking, and JPEG compression. The
scene colors x (black) lie a line that extends well beyond the
cube as the exposure time grows large, and the chromatic-
ity of the patch is such that all scene colors lie outside the
sRGB gamut. The wide-gamut RAW values x̃ (magenta)
are very close to these scene colors for low exposures, but



they are clipped for longer exposures when the intensity
grows large. The rendered colors y = f(CW x̃) (blue)
lie within the output gamut, and are significantly affected
by the combined effects of sensor saturation, white balance,
and the color space transform. Interestingly, these rendered
colors are relatively far inside the boundary of the sRGB
gamut, so the conventional wisdom in radiometric calibra-
tion that one should discard pixels with very small or very
large JPEG values as being “clipped” is unlikely to detect
and properly treat them.

2.2. Inverse (de-rendering) model

Our goal is to infer, for each possible rendered color y,
the original scene color x that created it. As information is
lost in the forward rendering process, exact recovery is not
possible and thus any deterministic function that predicts a
single point estimate is bound to be wrong much of the time.
For that reason, we propose to estimate a distribution over
the space of possible scene colors. Specifically, we seek a
representation of p(x|y) from which we can either obtain a
MAP estimate of x or directly employ Bayesian inference
as desired for a given application (see Sec. 3.1 and Sec. 3.2).

We model the underlying de-rendering function, denoted
z, using Gaussian process (GP) regression [27]. Given a
training set {D = (yi,xi), i = 1, · · · , N}, composed
of inputs yi and noisy outputs xi, we model the outputs
{xci}c=R,G,B in each channel separately as coming from a
latent function zc that has a prior distribution described by
a GP, and is corrupted by additive noise εi:

xci = zc(yi) + εi, εi ∝ N (0, σ2
n). (1)

The latent function z serves as the inverse of the forward
rendering map composed of the color rendering function,
color transform, and white balance operations depicted in
Fig. 3. We will learn it using images in which the white
balance has been fixed to remove scene-dependence.

The classic GP regression paradigm uses a single set of
hyper-parameters controlling the smoothness of the inferred
function. However, our analysis of camera data has revealed
that such globally-defined (i.e., stationary) smoothness is
inadequate because there is significantly different behavior
in different regions of the sRGB gamut (see right of Fig. 2.)
Instead, the variance of z should be allowed to vary over
local neighborhoods of the sRGB color space.

Several extensions to the classic GP have been proposed
to model input-varying noise [26, 32, 21]. Here, we employ
a local GP regression model, which exploits the observa-
tion that, for compact radial covariance functions, only the
points close to a test point have significant influence on the
results [32]. Given a training dataset and a test point, the
method identifies a local neighborhood of the test point, and
performs prediction with the model either pre-trained based
on some local cluster (“offline local GP”), or learned on the

fly using neighbor points just detected (“online local GP”).5

More precisely, given training set D and a test sRGB color
y, we infer a test distribution of RAW values x conditioned
on y by identifying a local neighborhood of y inD, denoted
DN(y), and computing

px(x|y) =
∏
c

pGP (x
c|DN(y),y), (2)

where pGP (x|D,y) is the conditional GP likelihood of x
using training data D for sRGB colors y.

3. Working with photometric uncertainty
Linear measurements of scene radiance are crucial for

many computer vision tasks (shape from shading, image-
based rendering, deblurring, color constancy, intrinsic im-
ages, etc.), and the output of our de-rendering model can
be readily used in probabilistic approaches to these tasks.
Here we describe two such tasks and show how modeling
photometric uncertainty leads to more robust results.

3.1. Probabilistic wide-gamut imaging

Many applications that use Internet images operate by
inferring radiometric scene properties from multiple ob-
servations of the same scene point. For example, multi-
ple observations under different illuminations can be ex-
ploited for inferring diffuse object color [23] or more gen-
eral BRDFs [11]. To explore the benefits of modeling pho-
tometric uncertainty in such cases, we consider an example
scenario motivated by traditional HDR imaging with expo-
sure stacks [20, 6]. Given as input multiple exposures of
the same stationary scene, we seek to combine them into
one floating-point, HDR, and wide-gamut image.

Assume we are given a sequence of sRGB vectors cap-
tured at shutter speeds of {α1, α2, . . . , αN} seconds. Rep-
resent these by {y1, . . . ,yN}. We would like to predict the
RAW color, x0 say, that would have been obtained with a
shutter speed of α0 seconds. Note that α0 need not be one
of the shutter speeds used to capture the sRGB input.

Given a training set D, for each sRGB value y we esti-
mate the conditional distributions pxi

(xi|yi) for the RAW
value xi that would have been obtained with shutter speed
αi. Then, to obtain x0, we combine them using

px0
(x0|y1, . . . ,yN ) =

∏
i

px0
(x0|yi)

=
∏
i

αi

α0
pxi

(
αi

α0
x0|yi

)
. (3)

5To handle multimodality in the mapping, [32] shows how clustering
may be performed in both input and output spaces for the training data,
and a set of local regressors returned. However we believe that our inverse
map does not have multimodal structure, and we found that a single local
regressor provided adequate results. Implementation details with regard to
online and offline models are described in Sec. 4.



Since each channel pxi(xi|yi) is modeled by a Gaus-
sian process, this expression represents the product of
Gaussian distributions, so the conditional distribution
px0

(x0|y1, . . . ,yN ) =
∏

i px0
(x0|yi) will be Gaussian as

well. Our output for x0, therefore, is the mean and variance
of this Gaussian distribution.

This application reveals the power of a probabilistic
model: it provides a distribution rather than a point esti-
mate. For applications that combine multiple independent
measurements, this provides a natural way to assign more
weight to the estimates that have smaller variance.

3.2. Probabilistic Lambertian photometric stereo

When illumination varies, another way that multiple ob-
servations of the same scene can be used is to recover light-
ing information and/or scene geometry. This may be useful
when using Internet images for weather recovery [29], ge-
ometric camera calibration [17], or 3D reconstruction [1].
To quantitatively assess the utility of uncertainty modeling
in these types of applications we consider the toy problem
of recovering from JPEG images three-dimensional scene
shape using Lambertian photometric stereo.

Lambertian photometric stereo is a technique for esti-
mating the surface normals of a Lambertian object by ob-
serving that object under different lighting conditions and a
fixed viewpoint [33]. Suppose there are N different direc-
tional lighting conditions, with li ∈ R3 the direction and
strength of the ith source. Consider a single color channel
of single pixel in the image plane; denote by Ii the linear
intensity recorded in that channel under the ith light direc-
tion; and let n ∈ S2 and ρ ∈ R+ be the normal direction
and the albedo of the surface patch at the back-projection of
this pixel. The Lambertian reflectance model provides the
relation ρ〈li,n〉 = Ii, and the goal of photometric stereo is
to infer the material ρ and shape n given the set {li, Ii}.

Defining a pseudo-normal b , ρn, the relation between
the observed intensity and the scene parameters becomes

lTi b = Ii. (4)

Given three or more {li, Ii}-pairs, the traditional Lamber-
tian photometric stereo estimates pseudo-normal b (and
thus ρ and n) in a least-squares sense:

b = (LTL)−1LT I, (5)

whereL and I are the matrix and vector formed by stacking
the light directions li and measurements Ii, respectively.

The linear relation between intensity I and scene radi-
ance is crucial in photometric stereo. One can use RAW
measurements when they are available, but for Internet-
based vision tasks that rely on sRGB images, one must first
de-render the colors to achieve this linearity. In our case, the

de-rendering result for each pixel is described as a Gaus-
sian random variable Ii ∼ N (µi, σ

2
i ), and Eq. (4) can be

re-written as

lTi b = µi + σiεi, εi ∼ N (0, 1). (6)

From this it follows (e.g., [13]) that the maximum likeli-
hood estimate of the pseudo-normal b is obtained through
weighted least-squares, with weights given by the recipro-
cal of the variance. That is,

b = (LTWL)−1LTWµ, (7)

withW = diag{σ−2
i }Ni=1.

Once again we see that distributions provided by a proba-
bilistic de-rendering system can be employed very naturally
to selectively weight measurements for improved accuracy
and robustness.

4. Evaluation
For training, we collect for each camera model densely

sampled corresponding measurements of scene color and
rendered color. We obtain these by capturing a set of reg-
istered RAW and JPEG images of a standard color chart
(140-patch Digital ColorChecker SG, X-Rite Inc.). To ob-
tain a complete coverage of the RAW space, we use various
camera exposure settings (from all-black to all-white) and
various illumination spectra (a tungsten lamp sequentially
filtered by 16 distinct gels). This provides a very dense
set of RAW/JPEG pairs and more observations of saturated
colors than is available in existing databases [3, 18]. We
average the RAW and JPEG pixel values within each of the
140 color patches in each image to thoroughly suppress the
effects of demosaicking, noise, and compression, and all in
all, we obtain between 30,000 and 50,000 RAW/JPEG color
pairs {x̃i,yi} for each camera.

Scene colors x are obtained from RAW values x̃ us-
ing dcraw [5] for demosaicking without white balance or
a color space transform, which produces 16-bit uncom-
pressed color images in the color space defined by the cam-
era’s spectral filters. RAW values corresponding to satu-
rated sensor measurements are discarded and replaced by
estimates of scene color x extrapolated from RAW mea-
surements by the same camera under the same illuminant
but with lower camera exposure settings.

Three of the cameras—two point-and-shoot models
(Canon Powershot S90; Panasonic DMC-LX3) and a digital
SLR (Canon EOS 40D)—provide simultaneous RAW and
JPEG output, allowing training from each of these camera’s
data on its own. We also evaluate a fourth camera (Fuji
FinePix J10) that provides only JPEG output, and for this
we use one of the RAW-capable cameras (the Panasonic) as
a proxy to collect the registered RAW images.

For GP regression we use the GPML toolkit.6 We im-
6Available online at http://www.gaussianprocess.org/gpml/.

http://www.gaussianprocess.org/gpml/


RMSE Rel. RMSE
All Out-of-gamut All Out-of-gamut

CANON 40D-baseline .05 .09 .31 .36
CANON 40D-ours .02 .03 .07 .09
CANON S90-baseline .08 .14 .32 .49
CANON S90-ours .03 .04 .13 .14
PANASONIC-baseline .14 .09 .64 .56
PANASONIC-ours .04 .03 .13 .16
FUJI-baseline .24 n/a 1.46 n/a
FUJI-ours .13 n/a .39 n/a

Table 1. Accuracy of single-image RAW prediction. Root-mean-
squared error (RMSE) and relative RMSE of the mean values out-
put by our GP model compared to those of a polynomial base-
line [3]. We separately show errors over all RAW test colors, and
those only over RAW colors that are outside of the sRGB gamut.

plemented and tested both online and offline methods. For
the offline local GP, we cluster the training data inputs into
exemplars using k-means and learn a local regressor per ex-
emplar. At test time, we use the prediction of the model
from the test point’s closest exemplar. The performance of
both methods are about the same, but the complexity of the
latter is significantly lower. In all experiments described in
the following, we use offline local GP with k = 10 clusters
and output the nearest cluster as the DN(y) neighborhood
for a test point.

We also tested linear and squared exponential (SE) ker-
nels and found the latter to provide superior performance,
perhaps because of the nonlinear nature of the rendering
operation. The parameters of the SE kernel, as well as the
parameters of the additive noise covariance on the outputs,
were estimated via maximum likelihood for each local GP.

4.1. De-rendering
To begin, we evaluate our ability to hallucinate scene col-

ors from a single narrow-gamut sRGB image. We use as a
baseline a deterministic representation based on [3], which
suggests a forward rendering model composed of a linear
mapC followed by per-channel polynomials. Since our aim
is to recover the reverse mapping we invert this model nu-
merically. We only consider the best point estimate (Gaus-
sian mean, and MAP) and ignore for now the uncertainty
output of our model. In this scenario, the derendering re-
sults of the proposed GP are similar to an RBF model like
that of Lin et al. [18].7 (The benefit over [18] of providing
confidence levels will be evaluated subsequently.)

For each camera, we split the data points into training
and testing sets at random, training on 5000 pairs {xi,yi}
and testing on the rest. This experiment is designed to
provide insight into the predictive power of our model, as
compared to the baseline. We report in Table 1 both root-
mean-squared error (RMSE) and relative RMSE between

7While Lin et al. fit a per-channel nonlinear function followed by a
linear kernel RBF, our approach models both effects simultaneously using
a squared exponential kernel.

the ground truth scene color and each model’s prediction.
Because our dataset is dominated by lower-valued RGB col-
ors, relative RMSE provides a more meaningful measure of
the error by accounting for the total brightness of the RGB
vectors. We separately report the errors corresponding to
RAW test points that are outside of the sRGB gamut (e.g.,
29% of our RAW colors captured with the Canon 40D are
outside the sRGB gamut) because, as suggested by Fig. 2,
these are more affected by color rendering.

Based on these results we can say the following: 1) our
model achieves significantly lower mean errors than the de-
terministic baseline on all four cameras; 2) overall the er-
rors are higher for the Fuji camera, perhaps due to differ-
ences between its spectral filters and those of our (Pana-
sonic) RAW proxy; and 3) our model performs equally well
for scene colors that are inside and outside of the sRGB
gamut (note that we cannot identify them for the Fuji).

4.2. Wide gamut imaging

Here we follow a different experimental paradigm. We
hold out all 22 images of an exposure sequence taken un-
der a single illumination, and we train on a randomly sam-
pled subset of 5000 points from the rest. We repeat this
for all 16 illuminants and average the results. Comparisons
are made to a deterministic HDR algorithm similar to [6]
but with offline pre-calibration using either the polynomial
model of [3] or the RBF model similar to [18].

Results are shown in Fig. 4, where we see that the GP
model consistently outperform both HDR baselines, espe-
cially for out-of-gamut colors. As discussed earlier, prac-
titioners often seek to improve the performance of deter-
ministic HDR by applying thresholds to discard JPEG mea-
surements that are near the boundaries of the sRGB gamut.
We evaluate this approach by systematically reducing the
interval of 8-bit JPEG values that are used as input, starting
with all of them ([0, 255]), then discarding the lowest and
highest graylevels (i.e., using only values in [1, 254]), and
so on. The performance of deterministic approaches im-
proves dramatically as the thresholds are tightened, but the
optimal thresholds seem be different for different cameras.
In contrast, the performance obtained with our probabilistic
approach is small and uniform over all test intervals, a prop-
erty that follows from its proper accounting of uncertainty.

The advantage of the GP model becomes more clear
when we separately consider the errors for out-of-gamut
chromaticities. These scene colors tend to be poorly esti-
mated by deterministic approaches, which are constrained
to providing a single point estimate instead of distribution
that fits the one-to-many map. By explicitly modeling these
distributions, the GP model provides predictions for out-of-
gamut chromaticities that are almost as accurate as those
within the sRGB gamut.
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Figure 4. Wide-gamut imaging: Estimating wide-gamut linear
scene colors from a 22-image exposure sequences of sRGB JPEG
images. Plots show relative RMSE in predicted scene colors aver-
aged over 16 runs with input sequences of the same scene under
distinct illuminations. Horizontal axis reveals performance change
when reduced input JPEG intervals are selected using different
thresholds. Label GP (red) refers to our algorithm; Per-channel
(blue) refers to use of [3]; and RBF (black) is similar to [18].

4.3. Photometric Stereo

Finally, we evaluate our model in the context of proba-
bilistic Lambertian photometric stereo. We use the Canon
40D to collect JPEG images of a wooden sphere from a
fixed (approximately orthographic) viewpoint under direc-
tional lighting from twenty different known directions. We
apply the algorithm from Sec. 3.2 to estimate a surface nor-
mal for each pixel that back-projects to the sphere’s surface.
Since the shape of the surface can be determined from its

occluding contour in the orthographic image plane we can
compare our results directly to ground truth.

The angular error (degrees) in the estimated surface nor-
mal at each pixel is displayed in the left of Fig. 5. The
maximum likelihood estimates obtained with the proposed
GP model are more accurate than those estimated by the
baseline, in which JPEG values are deterministically de-
rendered via [3] prior to least-squares estimation of the sur-
face normals. The baseline method yields inaccurate esti-
mates of the surface normals when the JPEG images contain
near-saturated values. The third column shows the error that
results from a second baseline using gamma-inversed JPEG
values (a gamma parameter of 2.2 is assumed), and such er-
rors are much larger, as expected. Quantitively, the average
angular error of the proposed GP model is 3.41◦, for base-
line model the error is 4.54◦, and for gamma-inversed JPEG
the error is 8.92◦. The improved accuracy of the probabilis-
tic approach is also apparent in the right of Fig. 5, which
shows horizontal cross-sections of the depth-maps obtained
by integrating the normal fields using [8].

5. Conclusion
Most images captured and shared online are not in linear

(RAW) formats, but are instead in narrow-gamut (sRGB)
formats with colors that are severely distorted by cameras’
color rendering processes. In order for computer vision sys-
tems to maximally exploit the color information in these
images, they must first undo the color distortions as much
as possible. This paper advocates a probabilistic approach
to color de-rendering, one that embraces the multivalued na-
ture of the de-rendering map by providing for each rendered
sRGB color a distribution over the latent linear scene colors
that could have induced it. An advantage of this approach
is that it does not require discarding any image data using
ad-hoc thresholds. Instead, it allows making use of all ren-
dered color information by providing for each de-rendered
color a measure of its uncertainty.

Our experimental results suggest that a probabilistic rep-
resentation can be useful when combining per-image esti-
mates of linear scene color, and when recovering the shape
of Lambertian surfaces via photometry. The output of our
approach—a mean and variance over scene colors for each
sRGB image color—may have a practical impact for prob-
abilistic adaptations of other computer vision tasks as well
(deblurring, dehazing, matching and stitching, color con-
stancy, image-based modeling, object recognition, etc.).
One direction worth exploring is the use of spatial structure
in the input sRGB image(s), such as edges and textures, to
further constrain the de-rendered scene colors. This is in
the spirit of [31], and it begs the question of how well a
full-gamut linear scene color image can be recovered from
a single tone-mapped sRGB one.
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Figure 5. Photometric stereo: The left three figures show the angular errors, in degrees, in the per-pixel surface normals obtained using the
proposed method, the deterministic baseline, and the gamma-inversed JPEG values. The right figure shows one-dimensional cross sections
through surfaces obtained by integrating each set of surface normals, as compared to the ground truth shape.
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