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INTRODUCTION	
  

GEOMETRIC	
  OPTICS	
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  WAVE	
  OPTICS	
  DESIGNS	
  

Photolithography uses light to transfer a 
geometric pattern from a photomask to 
a light-sensitive chemical photoresist on 
a substrate. Limitations: surface should 
be piecewise constant with a small 
number of depth layers. 

REFLECTANCE	
  DESIGN	
  WITH	
  MICRO	
  FABRICATION	
  

FABRICATION	
  RESULTS	
  

Micro-facets model: The surface is composed of small mirror facets. Facets orientation 
determines the amount of energy reflected in different directions. (Weyrich et al. 09) 
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We fabricate surfaces with controlled appearance and reflectance properties, which is 
important for many industrial applications, including printing, product design, 
luminaire design, security markers visible under certain illumination conditions, and 
many others.  
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Limits of micro-facets model: 
cannot scale down the design 
since geometric optics model 
breaks. When facets size 
approach the wavelength, 
wave optics effects dominate. 
Typical dot size = 3cm x 3cm. 

When surface scales down, the reflectance obtained is very different than the 
geometric optics prediction. To fabricate high resolution reflectance, our design 
accounts for wave optics effects. 
Existing BRDF fabrication: 3cm dot units. Our approach: 220dpi -> 0.1mm dot units. 
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•  Coherent Illumination: find a surface height whose Fourier spectrum produce the 
desired reflectance. 

•  Incoherence illumination: find a set of     sized surface heights whose averaged 
Fourier power spectrum produce the desired reflectance. 

�c

o  Sampling process: step widths independently from a distribution  
o  Primal: sum of independent rectangles 

Expected spectrum: averaged sincs 
o  Fourier sinc width inversely proportional to primal steps width. 
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Re f l e c t i n g l i g h t 
everywhere except 
the mirror direction. 
Design goal: Zero DC 
surface modulation 
function. 

A wafer fabricated using 
photo-lithography, with a 
spatial resolution of 220dpi. 
Each dot has a different 
BRDF. 

Acquisition setup 
with the reflectance 
of a few patterns 
fabricated according 
to our approach. 
(a-c): Glossy lobe of 
different widths; 
(d,h): Anisotropic; 
(e,i,j): Anti-mirrors; 
(f-g): Anisotropic 
anti-mirrors. 
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Figure 2: Fabricated patterns viewed under white illumination at varying directions. First row: Design mask and the reflectance types
involved (synthetic). 2nd and 3rd rows: images of pattern under two different lighting directions (real). See supplementary video.
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half vector (note that unlike the standard convention h is not a unit
vector). We also denote by a(x) the surface modulation function,
that is, a signal whose phase is proportional to the surface height:
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We observe the intensity of the field and thus the reflectance under
coherent illumination is
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B Surface construction algorithm

As mentioned in Sec. ?? we attempt to find surface tilling R

o

whose
power spectrum provides a good approximation to the theoretical
expectation R

E

. We preform the optimization using a genetic algo-
rithm search.

The algorithm maintains a population of {Rj

o

}m
j=1 candidates,

which is initialized using random samples from Sampling Pro-
cess ??. For each candidate we define a score:
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Figure 3: Illumination setup: A surface illuminated from direction
l and viewed from v. (a) A point light source at p

l

emits a spherical
wave. When that wave interacts with the surface, each surface point
emits a new spherical wave centered at the interaction point. (b)
When the source is sufficiently far the spherical wave approaches
a plane wave. The phase difference between the field at a surface
point p

s

and the field at the origin is the projection of p
s

on l, given
by lTp

s

.

We iterate the following process

1. Mutate each sample R

j

o

by resampling ✏% of its parameters,
either resampling step heights z

j

or widths a
j

, to obtain a new
set of m candidates {Rj

o

new}m
j=1.

2. Evaluate the quality of each new sample:
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3. Select the best m candidates out of the 2m members in the
union of old and new populations.

The genetic optimization produces multiple R
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Figure 9: Our acquisition setup (top), and the reflectance of a few
patterns fabricated according to our approach. (a-c) A Glossy lobe
of 3 different widths. (d,h) Anisotropic reflectance. (e,i,j) Anti mir-
ror reflectance, (f-g) Anisotropic anti-mirrors.

of Fig. 1. Since we used a single etching process the generated
surface has only two distinct depths. Following the discussion in
Sec. 3.2 this implies that a specular spike is visible under white
light but can be canceled at a certain wavelength.

Different regions on our prototype wafers are designed to generate
a variety of different custom reflectance functions. In Figure 9 we
show measurements of the reflectance from different points on the
wafer corresponding to different reflections, including a glossy lobe
at a variety of widths, an anisotropic reflectance, anti-mirrors, and
anisotropic anti-mirrors. To capture these images we illuminate a
point on the surface using a tunable laser monochromatic source
with a narrow beam and image the reflectance on a diffuse surface.

For the examples shown in the first row the appropriate wavelength
is λ = 500nm. Under illumination from such a monochromatic
source the specular spike is not visible. The examples in the second
row come from a wafer with more significant fabrication errors and
thus some specular spike is visible at all wavelengths. The spec-
ular spike can be seen as the narrow impulse at the center of the
reflectance images in the second row. The illumination in these im-
ages comes from a λ = 550nm source.

In Figure 10 we show the reflected image of a planar dots pattern on
our prototype wafer. The imaging setup is shown along with close-
ups on parts of the wafer with different reflectance functions. The
reflected dots are blurred by the surface reflectance function and the
image resembles the shape of the designed reflectance function. We
first took images of the wafer under white illumination, at which a
specular spike is visible. As predicted by the simulation of Figure 8,
the specular spike has a magenta color since its green component is
weak. Next we took images using a narrow band filter centered at
a wavelength of λ = 550nm. As shown in the figure, the spike is
significantly reduced in the monochromatic image.

To demonstrate the high spatial resolution which can be achieved
with our approach, we fabricated surfaces with a dot (pitch) size
of 0.112mm (220dpi). The fabrication process allows us to im-
print a different design at each dot, giving rise to a different re-

flectance type at each dot. The physical dimensions of the entire
pattern are only 4 × 4cm which demonstrates a drastic resolution
improvement compared to the 3cm dot units of prior geometric op-
tics approaches [Weyrich et al. 2009]. An animation of the patterns
under varying illumination directions is included in the supplemen-
tary video. Figures 1 and 11 show a few examples. In Figure 1 and
in the first two columns of Figure 11 the patterns are composed of
anisotropic reflectances with opposite orientations, and as a result
the reflectance is inverted when the lighting direction changes from
horizontal to vertical. Our high resolution makes dithering possi-
ble without significant visual resolution loss, and for the pattern in
Figure 1 we dithered two anisotropic orientations to allow intersec-
tion of the horizontal and vertical reflectance regions. The pattern
in the 3rd column of Figure 11 demonstrates isotropic reflectance
with different lobe widths. The different regions change their in-
tensity as a function of the illumination angle. The background is
a perfect mirror (a lobe of zero width) which appears bright when
illuminated from the mirror direction (second row), and dark from
any other direction (third row). The last column shows a pattern
fabricated with an anti-mirror reflectance over a background with a
narrow isotropic lobe. Thus, at small incident angles the kids are
darker and the background is bright, while the kids region becomes
brighter as the illumination angle increases.

The images in Figures 1 and 11 were captured under white illumi-
nation. Thus all reflectance functions involve a specular spike. The
supplementary video (and the first example on the 3rd column of
Figure 11) show a bright spot which appears when the illumination
direction is exactly the mirror direction.

5 Limitations

Photolithography fabrication suffers from a number of limitations
summarized below.

1. The fabricated wafers produce a grayish reflectance and do
not allow for color albedo.

2. Photolithography is restricted to planar surfaces and cannot
be adapted to other object geometries.

3. The reflectance functions which can be designed using our
approach have very high spatial resolution but they are not
as general as the ones produced by previous geometric optics
approaches [Weyrich et al. 2009] .

4. Using optical lithography the smallest feature size is 2µm. As
we show in our analysis in Sec. 3.1, this implies that the max-
imum reflectance lobe width of our prototype is about 30o.
Note that this limitation can be alleviated by using more so-
phisticated technologies such as Electron Beam Lithography.

5. Our analysis ignored shadowing and masking. However the
etching depth in our prototype is on the order of a quarter
of the wavelength, which is very small relative to the feature
area (130nm etching depth compared to at least 2µm fea-
tures). Thus occlusion effects are negligible, and the Fourier
transform model is accurate except at extreme grazing angles.
Shadowing and masking can be potentially accounted for us-
ing the models of [Sancer 1969; He et al. 1991]

6. A single layer prototype is cable of canceling the specular
spike only at a single wavelength. A common fabrication er-
ror which leads to a non zero specular spike is ‘over-etching’,
meaning that the etched features are wider than planned, and
as a result a zero mean isn’t achieved at any wavelength.
In practice some of the wafers we fabricated were accurate
enough (Fig. 9, 1st row) while others suffered from such over
etching errors (Fig. 9, 2nd row).


