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1 Problem Statement
The least squares problem is to find a (local) minimizer for cost function

F (x) =

m∑
i=1

(fi(x))
2
= ‖f (x)‖2 = f (x)

>
f (x) , (1)

where fi : Rn 7→ R, i = 1, . . . ,m are given nonlinear functions.
A least squares problem is a special variant of the more general nonlinear programming problem, and the special

form provides useful structure that we can exploit. Define

(J (x))i,j =
∂fi
∂xj

(x) (2)

the Jacobian matrix of f (x), then we have

F′ (x) =2J (x)
>
f (x) , (3)

F ′′ (x) =2J (x)
>
J (x) + 2

m∑
i=1

fi (x)f
′′
i (x) , (4)

which means even when we do not have second-order information of f (x), we still know something about F ′′ (x)
from J (x) alone.

2 Algorithms
We make a linear approximation on f (x) near a given x as

f (x+ h) ≈ ` (h) = f (x) + J (x)h, (5)

which yields

F (x+ h) ≈ L (h) =` (h)
>
` (h) (6)

=f>f + 2h>J>f + h>J>Jh (7)

=F (x) + 2h>J>f + h>J>Jh. (8)

Note that this is equivalent to perform a second order Taylor expansion on F (x) and approximate F ′′ as 2J>J .
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2.1 Gauss-Newton algorithm
The Gauss-Newton algorithm minimize (8) directly, with

hgn = −
(
J>J

)−1
J>f . (9)

The algorithm has at least two short-comings: (1)
(
J>J

)
might be singular and (2) hgn might not be a descending

direction.

2.2 Levenberg-Marquardt algorithm [1, 2, 3]
Levenberg-Marquardt algorithm is a damped Gaussian-Newton method

hlm,1 = −
(
J>J + µI

)−1
J>f , (10)

or, as suggested by Marquardt

hlm,2 = −
(
J>J + µ diag

(
J>J

))−1
J>f . (11)

We write the two forms together as

h>lm = −
(
J>J + µD

)−1
J>f , (12)

where the “damping matrix” D can either be I or diag
(
J>J

)
.

2.2.1 Choice of damping factor [4]

Define a gain ratio

% =
F (x)− F (x+ hlm)

L(0)− L(hlm)
, (13)

where L(h) is defined in (6), and the denominator can be calculated as

L(0)− L(hlm) = h>lm

(
µDhlm − J>f

)
(14)

The update rule for µ will be

µk+1 =

{
µ ·max

{
1
3 , 1− (2%− 1)

3
}
; ν = 2 if % > 0,

µ · ν; ν = 2 · ν otherwise.
(15)

The initial µ is usually set as τ · maxi

{(
J>J

)
i,i

}
, where τ is a user specified parameter, which should be a

small value, e.g. τ = 10−6 if x0 is a good approximation to the final local minimum, and 10−3 or even 1 otherwise.
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2.2.2 Algorithm description

Algorithm 1: Levenberg-Marquardt method
Input : f (x) ,J (x): Input function and its Jacobian matrix.
Input : x0: Initial guess.
Input : τ : A parameter specifying initial damping factor, default 10−3.
Input : A stopping criterion.
Output: x: A local minimum.

1 x = x0, µ = τ ·maxi

{(
J>J

)
i,i

}
, ν = 2.

2 while the stopping criterion is not met do
3 Calculate hlm according to (12).
4 Calculate % according to (13).
5 if % > 0 then
6 x = x+ hlm, µ = µ ·max

{
1
3 , 1− (2%− 1)

3
}
, ν = 2.

7 else
8 µ = µ · ν, ν = 2ν.
9 end

10 end

2.2.3 Implementation notes

1. When the step size hlm is very small, the calculation of % in (Step 4) can suffer from numerical underflow. One
needs to check whether L(0)− L(hlm) < ε, where ε is the machine’s numerical percision, and if so, terminate
the algorithm. When the algorithm terminates this way, we are usually very close to a local minimum.

2. Due to possible ill-conditioning, the matrix
(
J>J

)
can be singular, and when µ is very small — which hap-

pens after a number of consecutive success descent — the matrix
(
J>J + µI

)
can also be close to sin-

gular, which causes numerical issues. To circumvent this, we put a minimum on µ in (Step 6), changing
it to µ = max

{
µmin, µ ·max

{
1
3 , 1− (2%− 1)

3
}}

, in order to make sure
(
J>J + µI

)
is always well-

conditioned. We choose µmin = 10−12 in our implementation.

3 Bounded Constraints
One of the common variants of the unconstrained nonlinear least squares problem is to add bounded constraints

li ≤ xi ≤ ui, (16)

with −∞ ≤ li < ui ≤ +∞ (infinity bound means not constraint). To incorporate such constraint, we define a
mapping from the unconstrained space to constrained space

x (y) : Rn 7→ [l,u] =
∏
i

[li, ui], (17)

and perform an unconstrained optimization on the function f(x(y)) with respect to y.

3.1 Mapping function
We list the specific mapping function from the unconstrained space to constrained space. The general rule is that (1)
the mapping is smooth and (2) the absolute value of derivative is smaller than 1 (but also close to 1 in most of the
place). We also provide one possible inverse of the mapping y0i (xi), which is used for initialization.
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• li = −∞, ui = +∞, xi unconstrained

xi = yi,
dxi
dyi

= 1; y0i = xi. (18)

• li = −∞, xi ≤ ui < +∞

xi = ui + 1−
√
y2i + 1,

dxi
dyi

= − yi√
y2i + 1

; y0i =

√
(ui + 1− xi)2 − 1. (19)

• −∞ < li ≤ xi, ui = +∞

xi = li − 1 +
√
y2i + 1,

dxi
dyi

=
yi√
y2i + 1

; y0i =

√
(li − 1− xi)2 − 1. (20)

• −∞ < li ≤ xi ≤ ui < +∞

xi =
li + ui

2
+
ui − li

2
sin

2yi
ui − li

,
dxi
dyi

= cos
2yi

ui − li
; y0i =

ui − li
2

arcsin
2xi − (ui + li)

ui − li
. (21)
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